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Abstract— Soft robots provide various application benefits in
comparison to their rigid counterparts, such as body flexibility
and sensitive manipulation. For dynamic control, models must
consider elastic deformation, underactuation, and redundancy.
However, analytical inversion of forward dynamics is not
possible due to the complexity of the model.

We propose differentiation of a kinematic model and com-
bination of the servo-constraints approach for underactuated
multi-body system control to obtain a full dynamic model
of a soft robot. We analyze the system for internal stability
and apply the model to a custom real-world soft robot. Our
experiments demonstrate the effectiveness of our approach in
tracking dynamic trajectories, averaging a positional error of
[?NUM].

I. INTRODUCTION

Soft robotics is a growing subfield of robotics research
with their flexible nature offering a wide range of advan-
tages and applications, including sensitive grasping and less
constrained motion in contrast to their rigid counterparts [1].
However, their deformable nature comes at the cost of an
infinite number of degrees of freedom and the need for new
modeling and control schemes.

In literature, a distinction is made between quasi-static
models and controllers, which neglect dynamics, and dy-
namic models and controllers. However, the terms quasi-
static and kinematic are often used interchangeably. Most of
the existing control algorithms for soft robots are based on
purely quasi-static modeling [2], [3]. [? add some examples
as references]. These models allow simple and accurate
control as long as the motions are slow enough that the
dynamics can be neglected. However, new soft robotics
applications require increasingly faster and more precise
motions. Therefore, dynamic models and controllers are
needed and are currently being developed for soft robots.

Real-time dynamic control remains challenging due to
the infinite dimensionality in the robot’s state space [4].
Differentiation of deeply-nested time-dependent variables in
the kinematics result in highly complex equations, which
are computationally expensive to solve in real-time [5], [2].
Moreover, feedback control requires sensor integration into
the soft robot, which is difficult to implement as sensors
must withstand the typically high strains without destroying
the softness of the robot. To overcome this, external camera
tracking systems are commonly installed, but the need for
a continuous clear view of the robot limits application
generality across different environments. Feedforward con-
trol alone, or a combination with simple feedback control,
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Fig. 1. Soft robot test system: A down-facing camera tracks the Apriltag-
cube which is attached to the soft robot (red body). The tendons si are
guided through holes in the soft body and pulled by the three motors j =
1 . . . 3 which are embedded in the ground-platform. The three pieces of the
circular disk mark the workspace.

can dramatically reduce the need for sensor measurements,
allowing for simpler, more robust, and less expensive soft
root design. Therefore, accurate dynamic forward control of
soft roots is an important and still largely unsolved problem.

Many works address dynamic forward modeling [5], [6],
[7]. However, precise output tracking tasks require known
system inputs to reach a desired output. Analytical model
inversion is challenging due to its high non-linearity and
complexity. Furthermore, soft robots are controlled with a
limited amount of actuators and are consequently typically
highly underactuated. Thus, not all degrees of freedom
can be controlled independently, which further hampers the
inversion. Hence, approaches from related fields can be
considered. One method is the addition of servo-constraints,
a model inversion technique commonly applied to complex
underactuated multibody systems [8].

A. Contribution

In this work, we address the inverse dynamics problem
by constraining the robot’s output to a desired trajectory. We
obtain forward dynamics from differentiation of a kinematic
model. We invert our model by using servo-constraints and
analyze for internal stability. Experimentally, we identify the
remaining unknowns of our self-built robot and validate the



strength of this approach by tracking dynamic trajectories
with the robot’s tip.

II. SOFT ROBOT TEST SYSTEM

Fig. 1 shows the beam-shaped soft robot used in this
work. The robot’s body is made of “HT45” type silicone
in a silicone molding process. It is stiff in the longitudinal
direction and allows bending in x- and y-direction. There
are six notches along the body for controlled deformation.
The soft robot is redundantly actuated by Ntendons = 3
tendons running along the outside of the soft robot body.
They are placed symmetrically around the circumference.
Three servos are used to directly control the length sj of
the tendons j ∈ 1 . . . Npieces. As system input, we consider
the forces u =

[
F1 F2 F3

]⊤
induced by the tendons.

Due to the redundant actuation, only two of the three tendon
lengths si can be selected independently, otherwise the
tendons would become loose or crack. As system output,
we track the tip position of the robot z ∈ R2. Since u ∈ R3,
the tip moves on a semi-sphere hull enveloping the robot.
For reference measurements, an external camera tracking
system based on AprilTags [9] is used. Thus, a cube of size
lcube = 0.03m is attached to the robot’s end, where AprilTags
of family 36h11 are glued to the sides and top. Tab. I provides
a full list of the robot’s characteristics.

TABLE I
CHARACTERISTICS OF THE SOFT ROBOT TEST SYSTEM.

Dimension Symbol Unit Value

robot length lrobot m 0.19
robot radius rrobot m 0.015
length of tendon guide holes lguide m 0.014
circle radius of holes rguide m 0.0125
motor reel diameter dreel m 0.046
end-effector cube mass mcube kg 0.017
Mass of silicone body mbody kg 0.117
Young’s modulus E MPA 2.04
Shore-hardness (HT 45-silicone) H ShA 45
Number of actuation tendonds Ntendons - 3

III. FORWARD MODEL OF THE SOFT ROBOT

In this section, we draw a kinematic representation for
the present robot system and differentiate by time to obtain
forward dynamics. We discuss actuation redundancy and
introduce system unknowns that influence control.

A. Piecewise Constant Curvature Model

Approaches for modeling soft robot kinematics are com-
monly based on finite element (FE)-techniques and data-
driven models such as the cosserat rod [10], [11] and neural
networks, respectively [12], [12]. The piecewise constant
curvature (PCC) model is one of the simplest and most
intuitive models for beams undergoing large deformations.

1) Discretization: In PCC, a beam is discretized into
i = 1 . . . Npieces pieces of constant curvature using a 1D FE
mesh. Each piece consists of a massless elastic link at the end
of which a mass-loaded disk is mounted. The stiffness and
damping properties are aggregated in the elastic link, and the
inertia properties are aggregated in the disk. Bending in two
spatial directions, torsion and strain can be modeled with
the PCC model. Shear is neglected. The elongation mode
is usually very stiff compared to the bending and torsion
modes. Therefore, it is often neglected, as in the following.
Torsion is also often neglected because in many applications
there are no or very small torsional moments . In this work,
we explore configurations Npieces ∈ [1, . . . , 6].

Each piece has length li and mass mi and is the total value
divided by Npieces. Note that for the last piece the mass of the
cube mcube is added. The Young modulus E and the second
moments of area Iloc,xx, Iloc,yy , and Iloc,zz oare consistent
for all Npieces pieces

Iloc,xx = Iloc,yy =
mi

12
(3r2robot + l2i ), (1)

Iloc,zz =
mi

2
r2robot. (2)

B. Parametrization

There are various parameterizations of the PCC model
[13], most of which have problems with removable singular-
ities [14]. We use a parameterization based on [15], which
treats singularities, appearing for the straight configuration,
with Taylor series expansion.

Two rotations µi and νi describe the deformation of a
piece, as seen in Fig.2. The vector ρ points to the center of
rotation

ρi,loc =
li
φ2
i

[
νi −µi 0

]⊤
, (3)

where φi =
√
ν2i + µ2

i is the total bending angle.

yi−1

zi−1

xi−1

νi−1

µi−1

ρi,loc
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Fig. 2. Parameterization according to [15].

For each piece i, the rotation matrix Ri−1,i and posi-
tion matrix pi,loc describe the piece’s tip (bottom frame of



the adjacent piece) in the current bottom, piece-fixed frame

pi,loc =
[
−ρi,loc,xσi −ρi,loc,yσi ∥ρi,loc∥Sφi

]⊤
, (4)

Ri−1,i =



σiν̄

2
i + 1 σiµ̄iν̄i ν̄i sinφi

σiµ̄iν̄i σiµ̄
2
i + 1 µ̄i sinφi

−ν̄i sinφi −µ̄i sinφi cosφi


 , (5)

where σi = cos(φi)− 1, ν̄i =
νi
φi

and µ̄i =
µi

φi
, and ρi,loc,x,

and ρi,loc,y are the x and y entries of ρi,loc. With the global
frame at ρ0,loc, transformation into the global frame of pi

and Ri for each piece is obtained by

Ri =

{
Ri,loc for i = 1
Ri−1 ·Ri−1,i for i > 1

, (6)

pi =

{
pi,loc for i = 1
pi−1 +Ri−1 · pi,loc for i > 1

. (7)

C. Internal and External Loads

Internal forces and moments result from its bending stiff-
ness. Although soft robots have typically strong damping,
we neglect resulting forces as experiments have shown a
damping ratio of only δ ≈ 0.0032 for our robot, only
considering damping for the stability analysis in IV-B.1. The
x− y-directional bending can be calculated by modeling the
robot as a homogeneous beam [16]. The magnitude of the
moment that acts on each piece can be calculated as

li,bend = EIloc,xx · φi]

li
. (8)

Considering the free-body diagram of a single elastic piece,
both ends experience bending. Therefore, li,bend acts on the
current piece as well as on the previous piece

li,bend = −li,bend · ni,bp, (9)
li+1:i,bend = li+1,bend · ni+1,bp. (10)

Here ni,bp is the normal vector of the bending plane

ni,bp = Ri−1 ·
[
− sin(θi) cos(θi) 0

]⊤
, (11)

where θi = arctan 2(µi, νi) is the rotation angle to the bend-
ing plane. Note that the combination of the trigonometric
functions causes zero division for the robots straight pose,
and hence requires Taylor approximations of sin and cos.

As the robot is positioned upright, the only external force
results from gravitation in negative z-direction

fg,i =
[
0 0 −mig

]⊤
. (12)

D. Actuation Loads

Actuation of the robot is achieved by three tendons guided
through holes in the robots body 3. We neglect tendon
friction, which results in constant tendon forces Fj along
the three tendons. The position of the holes that guide the
tendons are given in the local frame as

rli,j,loc = Rz(ϕj)
[
rguide 0 −lguide/2

]⊤
, (13)

rui,j,loc = Rz(ϕj)
[
rguide 0 lguide/2

]⊤
, (14)

where ϕj ∈ {0◦, 120◦, 240◦} for j = 1 . . . 3. Here, rguide is
the distance from the piece’s center axis to the guide wholes,

lguide is the guide’s length, and Rz is the rotation matrix
around the z-axis. Transformation into the global coordinate
frame gives

rqi,j = pi +Ri · rqi,j,loc, (15)

for q ∈ {u, l}. The forces from the tendons acting on the

x

y

lguide

rguide

z

120◦

Fig. 3. Positions of the bolt holes that guide the tendons.

pieces of the soft robot can be derived by cutting free
the pieces and tendons as shown in Fig. 4. Thereby, it
can be assumed without loss of generality that the tendons
are fixed in the tendon guides. With the exception of the
first and the last piece, each tendon exerts an incoming
force fi,i−1,j,tend and an outgoing force fi,i+1,j,tend on each
piece The magnitude of the forces is equal to the tendon
forces Fj , the direction can be derived from the direction
of the incoming and outgoing tendon. The effective force
directions are obtained by utilizing the positional vectors of
two pieces pointing towards adjacent guides. The normalized
direction vectors for the forces pointing towards the previous
piece are

ci:i−1,j =
rui−1,j − rli,j

∥rui−1,j − rli,j∥
, (16)

and similar for the adjacent piece

ci:i+1,j =
rli+1,j − rui,j

∥rli+1,j − rui,j∥
. (17)

Note, for the last piece i = Npieces ci:i+1,j = 0. Accordingly,
the actuation forces for each piece are given by

fi:i−1,tendon =

3∑

j=1

ci:i−1,j · Fj , (18)

fi:i+1,tendon =

3∑

j=1

ci:i+1,j · Fj . (19)

In addition to the forces, each piece experiences moments
as the tendon forces are applied eccentrically. induced by
pulling the tendons. Hence, the moments acting on each piece



are

li:i−1,tendon =

3∑

j=1

(
Ri · rli,j

)
× (ci:i−1,j · Fj) , (20)

li:i+1,tendon =

3∑

j=1

(
Ri · rui,j

)
× (ci:i+1,j · Fj) . (21)

c1:2,j

c2:1,j

c2:3,j

cNpieces:Npieces−1,j

xy
z

Fig. 4. The acting forces on each piece induced by a tendon’s actuation.

1) Modeling tendons: The actuation of the robot is ac-
complished by pulling the tendons 5. This input is described
as a change in length sj for each tendon j. Further, sj
consists of the geometric change sgeo,j and an elastic change
sstiff,j , due the elongation of each tendon and the robot’s own
elongation under load

sj = sgeo,j + sstiff,j . (22)

Considering the robots current state y and the tendon guides
relative position in space, the geometric change in length of
a single tendon is given by

sgeo,j = lcab,y0
−

N∑

n=0

(∥rln+1,j − run,j∥)|y. (23)

Modeling the elasticity of the tendonds with a virtual spring
of stiffness cj , provides a mapping from force Fj to length
si. In addition, variations in mounting and pretension of the
tendons require consideration, which reasons the introduction
of a heuristic deformation coefficient bj for sgeo,j .

sj =
Fj

cj
+ bjsgeo,j . (24)

At last, considering the diameter of the reels dreel provides
the angular rotation of the motors

αj =
2sj
dreel

. (25)

E. Equations of Motion

With yi =
[
µi νi

]⊤
, we define the generalized coor-

dinates y =
[
y⊤
1,loc . . . y⊤

Npieces,loc

]⊤
. The equations of

motions are derived following the Newton-Euler formalism,
and can be written as second order ordinary differential
equations (ODE) in the form

M(y, t)ÿ + k(y, ẏ, t) = q(y, ẏ, t) +B(y)u. (26)

With f = 2Npieces, M ∈ Rf×f is the mass matrix, k ∈ Rf

are the Coriolis, centrifugal and gyroscopic forces and q ∈
Rf are the applied forces, and B ∈ Rf×Ntendons is the input
distribution matrix.

sstiff,j

dreel

sgeo,j

Fig. 5. The motor’s rotation causes the robot to bend and tendons to stretch.

IV. MODEL INVERSION USING SERVO CONSTRAINTS

For robot control, the inverse of Eq. 26 is needed. We ap-
ply the servo-constraints approach [17] to obtain the inverse
model, a common approach for underactuated multibody
control [18], [19].

A. Inverse Model

To model the system’s inverse direction, the equations of
motion are extended by additional constraints acting on the
system to account for the system’s redundancy, and thus
eliminate the number of unknowns. Considering the goal
of trajectory tracking, constraints on positional level are
reasonable. Together with the equations of motion in ODE
form Eq. 26, the differential algebraic equations (DAE) are
defined as

v = ẏ,

M(y, t)v̇ = q(y,v, t)− k(y,v, t) +B(y)u,

c(y, t) = h(y)− zdes(t) = 0.

(27)

This system is fully described and can be solved for the state
vector x =

[
y⊤ v⊤ u⊤]⊤. The system’s output z =

h(y) is constrained to be equal to the desired output zdes(t).
With the additional constraint, the system is complete.

An output function is defined by considering the semi-
sphere hull workspace of the robot. From a top-down view,
each point on the hull is defined by considering the x− and
y−coordinate of the tip position of the robot.

z = h(y) =
[
px,N (y) py,N (y)

]⊤
. (28)

The robot’s stiffness in its longitudinal direction causes a
redundant actuation input and an input-mapping is required.



The robot’s workspace is divided along the guides into three
pieces, as can be seen in Fig. 1. The two forces inside the
area of actuation are set as positive, while the remaining force
outside of the sub-workspace is set to zero. Additionally,
this approach gives the smallest forces in comparison to
other approaches, where all forces are higher in general. The
workspace distribution is characterized by an angle ψ defined
in the x-y plane, giving a mapping

u = Φ⊤ · ured, (29)

with ured denoting the reduced unknown input consisting of
the two active forces. The mapping matrix Φ is dependent
on the location of the desired tip position, given by

Φ =





[
1 0 0
0 1 0

]
for ψ ∈ [0, 120◦)

[
0 1 0
0 0 1

]
for ψ ∈ [120◦, 240◦)

[
0 0 1
1 0 0

]
for ψ ∈ [240◦, 360◦)

(30)

with ψ = arctan 2(zdes
y , zdes

x ) and zdes
y and zdes

x being the x
and y coordinates of the desired output position of the end-
effector.

B. Internal Dynamics and Invertibility Analysis

To guarantee stable control, we analyze the system’s
internal dynamics and invertibility. We consider the differ-
entiation index, which describes the degree of differentiation
of the algebraic system constraints until the DAE can be
transformed into ODE form [20]. The input u appears
when differentiating c(y, t) twice yielding a differentiation
index of 3, which is typical for multi-body systems [21].
Substitution of Eq. ODE for v̇ gives the feed-forward control
input

ũ(t) = (H̃M̃−1B̃)−1(z̈des−H̃M̃−1(q̃− k̃)−H̃v), (31)

where H = ∂h
∂y and the tilde marks quantities evaluated for

x̃, the state required to reach z̈des. For full rank of Y(y) =

H̃M̃−1B̃, the input u directly influences all system outputs
and a control law can be established straightforward [17].

In the following analysis, we only consider the case
Npieces = 2, which yields a multi-body configuration while
staying computationally cheap when solving Eq. 27 using
an implicit Euler approach. As the solver remains stable
for Npieces ≥ 2, we assume that stability remains for more
complex models.

1) Stability Analysis of the Inverse System: Full-specified
motion is only given for Npieces = 1 with Ntendons =
dim(z) = f = 2. For Npieces ≥ 2, internal dynamics
may cause destabilization and servo-constraints have to be
designed through dynamic couplings in the system instead
[17]. A non-linear system is of minimum phase if it has
stable zero dynamics [22]. Thus, we linearize the inverse
model of Eq. 26 at a stationary point xeq. For small values

around the point of equilibrium ỹ = y − yeq, ṽ = v − veq
and ũ = u− ueq are

Mlin
˙̃v +Dlinṽ +Klinỹ = Blinũ (32)

Hlinỹ = 0, (33)

with Mlin = M(yeq), Blin = B(yeq), Hlin = H(yeq), and

Dlin = C +

(
∂k

∂v
− ∂q

∂v

)∣∣∣∣
yeq,veq

, (34)

Klin =

(
∂k

∂y
− ∂q

∂y
− ∂Bueq

∂y

)∣∣∣∣
yeq,ẏeq

. (35)

The linearized equations can be rewritten as

E∗ ˙̃x = A∗x̃ (36)

with the augmented state vector

x̃ =
[
ỹ⊤ ṽ⊤ ũ⊤]⊤ (37)

and the two matrices

E∗ =



I 0 0
0 Mlin 0
0 0 0


 (38)

A∗ =




0 I 0
−Klin −Dlin Blin
Hlin 0 0


 . (39)

Rearranging 36 gives the eigenvalue problem

(A∗ − λE∗)c∗ = 0. (40)

Infinite eigenvalues result from algebraic constraints with
infinitely fast motion [23]. Invariant poles λ <∞ determine
if the system is of minimum phase. As the system is
rotationally symmetric, only a single workspace-section is
considered. Given a point of equilibrium by evaluating Eq. 26
for v = 0 and v̇ = 0 for an arbitrary force u =

[
1 1 0

]T
and solving Eq. 40 for λ shows internal stability of the
inverse system, as seen in Fig. 6. All λ are positioned in
the left-hand plane confirming minimum-phase.

2) Relative Degree: Continuous differentiability of zdes

is required for a control law to exist. For this purpose, the
relative degree rrel describes the number of derivatives of z
until z appears and serves as the differentiability index of
zdes [24]. Differentiating z and substituting 26 for u gives

z̈ = H(M−1(q − k +Bu)) + Ḣv. (41)

With Eq. 41 being of second order degree and Y having
full rank, the system has rank(Y) = rrel = 2. This
confirms with the differentiation index being rrel + 1, an
ideal configuration for inverse model DAE according to [25],
and hence the desired trajectories have to be of second order
degree. It is assumed that the rrel is independent of Npieces as
proving continuous differentiability for Npieces > 2 remains
challenging due to the high complexity.
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Fig. 6. Eigenvalues of the inverse system.

V. EXPERIMENTAL EVALUATION

We study the effectiveness of this approach on circular and
triangular trajectory. First, we derive function approximators
for bj and cj . Second, we evaluate the effects of speed and
discretization degree Npieces on the positional accuracy.

A. Actuation Coefficients Identification

First, we tune the heuristic deformation and spring stiff-
ness coefficients bj and cj . For this purpose, the average
positional error of the end-effector in relation to the robot’s
center is introduced as

eavg = mean
(∥zdes

t − zmeas
t ∥

rc

)
, (42)

where zmeas
t and zdes

t denote the measured and desired
position of the endeffector in the x-y plane, respectively.
The coefficients are determined using circular trajectories
centered around the robot’s base. Consequently, eavg is
normalized by the radius rc of a circle. As during the
stability analysis, the DAE in Eq. 27 are solved using implicit
Euler with a frequency of 10 . . . 100Hz. No significant
influence on the robot’s performance was found within this
range. Early experiments showed that constant bj and cj as
well as rc-based linear scaling are insufficient for precise
tracking. Thus, we tune coefficients for a handful of circles
experimentally and fit polynomial function approximators
of second-order degree dependent on the current distance
between the robot’s tip and center. Note that rather larger
radii are sampled as close to the center smaller forces act
on the robot body, and friction effects predominate actua-
tion forces, impacting tracking quality. The approximators
for cj(∥zdes

t∥) and bj(∥zdes
t∥) are shown in Fig. 7. The

parameters are listed in Tab. II.
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Fig. 7. Polynomials to approximate the coefficients bj and cj .

TABLE II
POLYNOMIAL COEFFICIENTS FOR REPRESENTING cj AND bj .

Coefficient Unit Value for rc ∈ {0.04, 0.08, 0.12}cm

b1 − 1.05 1.14 1.27
b2 − 1.15 1.13 1.15
b3 − 1.2 1.25 1.3
c1 N/m 1350 1400 1450
c2 N/m 1100 1050 1000
c3 N/m 1050 1300 1600

B. Trajectory Tracking

We introduce two distinctive trajectories, which reveal the
robot’s dynamic nature, a circular path and an equilateral
triangle. Circular motion around the robot’s base causes
centrifugal effects. The triangle provides straight paths and
sharp turns, which pose challenges to the actuation. All
trajectories are of constant velocity vmax with linear accel-
eration with maximum acceleration amax = 0.1 m

s2 and jerk
jmax = 0.1 m

s3 . The robot takes at least one full lap before
deaccelerating again. It should be noted that, for certain
configurations, the solver struggled to find solutions during
the initial deflection, where a slight adjustment of the initial
position was sufficient.

1) Circular Trajectory: Three circles of different radii are
studied. At rc = 4 cm, tracking is significantly affected by
friction due to the small actuation forces. In contrast, rc =
12 cm closes the robot’s workspace. At last, rc = 8 cm serves
as an intermediate.

Tab. III shows the average positional error eavg for varying
vmax and rc. In general, the higher the velocity the larger eavg.
However, eavg remains relatively even across all rc at vmax =
0.05 m

s , where dynamic inertia and vibration are small. For
the small circle rc = 0.04m, disruptive effect of cause
tracking inaccuracy resulting in the highest eavg = 0.314,
overall. Motion along the workspace limits for rc = 0.12m
is plagued by actuation limits of the motors, causing drift in
the end-effectors position. Highest accuracy is achieved at
rc = 0.08m, where disruptive effects collectively have the



TABLE III
ERROR eAVG ON TRACKING CIRCLES OF RADII rc AND VELOCITY vMAX .

Circle size vmax = 0.05 m
s

vmax = 0.075 m
s

vmax = 0.1 m
s

rc = 0.04m 0.144 0.228 0.314
rc = 0.08m 0.114 0.148 0.209
rc = 0.12m 0.128 0.174 0.25

least impact.
Derivation of dynamics with Npieces = 6 kinematics

comes at the cost of enormously higher computation power,
which raises the question if a less complex representation
impact dynamic tracking quality. Fig. 8 visualizes tracking
for Npieces ∈ {1, 3, 6}. A clear decrease in performance is
apparent for simpler modeling, where strong deformations
can be modeled less accurately.
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Fig. 8. Tracking a circle of rc = 0.08m with vmax = 0.1 m
s

for varying
Npieces ∈ {1, 3, 6}. The orange squares mark the servo-motor locations.

2) Triangular Trajectory: We examine two triangular tra-
jectories, one whose corners align with the actuator positions
and another mirrored vertically. Their size is chosen to avoid
workspace limits. We set vmax = 0.1 m

s and Npieces = 6.
Fig. 9 compares ground-truth to the measured tip position.

In both cases, the robot is capable of tracking the straight
lines, where strong deformations occur only closer to the
corners. Especially for the aligned path, the sharp turns at
the corners is apparent.

3) Interpretation: Overall, the approach demonstrates
strong tracking performance for dynamic motions. However,
a number of positional offsets are present in all cases, which
can be traced back to various reasons. First, the tendons
are fixated with strong tape only, which causes loosening
over time. Second, variations in assembly and pretension of
tendons plagued tuning of bj and cj . Hence, repetitive offsets
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Fig. 9. Tracking equilateral triangles with vmax = 0.1 m
s

and Npieces = 6.
The orange squares mark the servo-motor locations.

were challenging to avoid as the function approximators
scale with ∥zdes

t∥, only. In particular, the triangular paths
indicate that the motor at (0.12, 0) suffers from mounting
inaccuracies and restricts the robot in reaching the desired
far-left and -right corners. Consequently, the robot overshoots
at the opposite straight edges.

VI. CONCLUSION

In this work, we presented a model-based feed-forward
dynamic control approach for beam-shaped soft robots. Un-
der the assumption of piece-wise constant curvature, we
derive forward dynamics and inverse the model applying
servo-constraints. We study internal stability of the inverse
dynamics and tuned actuation coefficients in a practical
manner. We perform experiments on trajectory tracking using
a real-world test system to validate the applicability of
our approach. The results show limitations in our actuation
functions and sensitivity to motor limits, pretension, and
mounting variation.
In future work, we aim to improve the system’s setup
with fixed tendons and constant pretension. Second, we
plan to improve the actuation function using learning-based
approaches to account for uncertainties. Last, an increase in
the number of tendons enables research on dynamic control
under more complex deformation.

References are important to the reader; therefore, each
citation must be complete and correct. If at all possible,
references should be commonly available publications.
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[18] S. Drücker and R. Seifried, “Real-time trajectory control of an
overhead crane using servo-constraints,” Multibody System Dynamics,
vol. 42, 01 2018.

[19] R. Seifried and M. Burkhardt, “Servo-constraints for control of flexible
multibody systems with contact,” vol. 7, 08 2013.

[20] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II.
Stiff and Differential-Algebraic Problems, 01 1996, vol. 14.

[21] R. Seifried and W. Blajer, “Analysis of servo-constraint
problems for underactuated multibody systems,” Mechanical
Sciences, vol. 4, no. 1, pp. 113–129, 2013. [Online]. Available:
https://ms.copernicus.org/articles/4/113/2013/

[22] R. Seifried, Dynamics of Underactuated Multibody Systems: Modeling,
Control and Optimal Design, 2014.
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