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Abstract—In this work, we propose a transformer based
approach to predict trajectories of multiple race cars within
complex scenarios in autonomous racing. Short-term historic
data together with contextual semantic images were employed
to encode wide-ranging information about multiple cars in one
frame. We use a vision transformer trained in an unsupervised
fashion to extract meaningful information from the semantic
images. A multi-agent interaction aware transformer is used
to make predictions accounting for both dynamics and vehicle
interactions.

I. INTRODUCTION

While autonomous racing is mainly concerned with lap-time
optimization to this date, interactions such as overtakes be-
tween autonomous vehicles are still rare. This is partly due to
the highly dynamic, fast and possibly adversarial interactions
between the different vehicles. To act safely in these regimes, it
is crucial to have a precise understanding of what actions other
vehicles take in the near future. A system that aims to predict
these well should account for all interactions between the
involved vehicles. This makes the task especially challenging
because the number of vehicles in different situations change
and because it requires an understanding of how information
changes and relates over two dimensions - the time and the
different vehicles.

A. Related Work

The principle of combining contextual information
from semantic maps with trajectory histories to achieve
environmental-aware trajectory predictions has been widely
explored in the context of traffic. In [2], a time sequence of
semantic map representations of parking lots were used in
two ways - to simultaneously infer about target parking spots
and improve trajectory predictions for parking maneuvers
of individual cars. General dynamical traffic situations
increase the number of observed cars and therefore require
jointly predicted trajectories for multiple cars [4], [5]. Here,
static semantic representations proved valuable in enforcing
feasibility of the predicted trajectories. As in many other
recent applications which include sequential context, a large
amount of recent approaches are based on the Transformer
network structure, presented in [3]. Since the original
structure was specifically designed for linking information
along one dimension, [5] proposed a modified method for the
Multi-Head Attention to account for awareness of multiple
agents. Nowadays, CNNs are still mainly used for extracting
meaningful features from semantic representations. However,

novel attention-based mechanisms like the Vision Transformer
(ViT) [6] are making their way to be used likewise [4].

B. Contribution

In this work, we propose a learning-based approach that
makes short-term predictions of a varying number of vehicles
only using short-term historic data. Note that here we do not
aim to learn specific driver’s policies but rather aim to obtain a
model that can predict intentions based on very short observa-
tions. Together with the state history of the vehicles of interest,
we construct semantic images of the historic data to provide
context. Features are extracted from the semantic images using
ViTs. To pre-train the ViTs, masked autoencoders (MAE) are
used. These features and the state information are used by
our proposed transformer network architecture attending over
both time and the number of vehicles. The model is trained and
evaluated on a dataset over all tracks driven by an experienced
player versus AI in the F1 2020 racing game.

II. PROBLEM FORMULATION

The goal of this work is to provide a system that makes
accurate short-term joint predictions of a varying number of
vehicles nveh in adversarial racing.

A. Inputs

The inputs consist of short-term historic information. A
vehicle state of vehicle i at time t is defined as

x(i,t) =
[
x(i,t) y(i,t) γ(i,t)

]T
where x and y denote the position of the vehicle while γ
depicts the orientation. A trajectory of one vehicle consists
of multiple states. We define X (t)

hist as the set of trajectories
of the nveh vehicles over nhist time steps in the range from
t− (nhist − 1) to the current time step t.

Furthermore, semantic images are supplied to provide con-
textual information of the situations. We generate images
for each of the nhist time-steps and for each vehicle. The
images only differ in terms of coloring between the different
vehicles. For each vehicle, we generate the image once where
the vehicle of interest is colored differently from the others,
as depicted in fig. 1. The set of semantic images for all
vehicles for the nhist steps up to the time step t is named I(t)

hist.
Consequently, for a sample with nhist = 10 and nveh = 4, we
generate nhist · nveh = 40 images.
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B. Outputs

As we aim to predict trajectories of vehicles to use them
to act safely, positional and orientation information of the
vehicles in the future is sufficient. Thus, the outputs are npred

future vehicle states for each vehicle, again consisting of
position and orientation in 2D. The corresponding set of npred
future states for all vehicles from time step t+1 up to t+npred

is called X (t)
pred.

Fig. 1: Visualization of the input sequences for different
vehicles of one sample. Every driver’s trajectory should be
predicted. To be distinguishable, one of the involved vehicles is
colored different in the chosen sample over the time sequence.

III. DATASET

Currently, there is still limited public availability of real-
world telemetry data of races. Therefore, and considering the
close to reality experience of video games nowadays, we
decided to gather our data from the F1 2020 racing game
by Codemasters. Offering an interface via User Datagram
Protocol (UDP), the game provides access to telemetry data on
demand. To generate meaningful semantic images, telemetry
data together with the track layout is required. For the former,
we utilize the dataset from [1], consisting of telemetry data of
20 drivers from 22 races each about half an hour. To recon-
struct the track layout, we drove along the track boundaries of
all tracks and frequently sampled the positional data. Further
postprocessing and interpolation was done as a final step to
yield accurate maps of the tracks used in the game.

A. Data Preprocessing

The collected data is interpolated and sampled with a fixed
frequency of 10Hz. Each dataset sample consists of nhist
time steps for the historical data and npred time steps for the
future. To make sure that the data samples used for training
contain a sufficient proportion of interaction situations, we
determine for each sample whether it contains an overtake and
measure the minimum time difference between racing drivers
as a heuristic for estimating the likeliness of interactions. This
allows to prefer interaction-heavy samples during training and
evaluation. Situations where the vehicles are not on the track
(e.g. for pit-stops) are filtered out as well. The historical data
of each sample contains then nhist generated images and states
for each driver involved in the current situation, whereas the
predicted data just contains the states to be predicted for each
driver. As a last preprocessing step, we ensure that there are
no discontinuities in heading angle in the dataset which are
caused by angle wrapping.

B. Image Generation

To generate the semantic bird’s-eye-view images for contex-
tual information, we manually reconstruct the tracks from the
F1 2020 racing game and use it together with the dataset from
[1] to generate semantic maps of the situations. These maps
contain a local cutout of the track together with the vehicles
involved in the situation. We decided to choose a resolution
of H × W = 224 × 224 pixels for the image samples over
3-channels of RGB-data. A sequence of nhist images displays
a situation of the race where a certain number of nveh are
involved. For each sequence of images we chose a cutout
which is fixed over time. It is large enough to capture both
the historic data and information about the track to support
the understanding of the movement of the vehicles. The cutout
size is dynamically generated, based on the current situation.
While iterating through the timeline of a race, we define a
fixed-size initial frame centered on one of all the vehicles. The
visible vehicles determine the number of vehicles involved in
the current situation. Then, the cutout is inflated to capture
the whole history of positions of all involved vehicles. This
ensures that the cutout adapts to the current speed of the
vehicles. For every time step, each vehicle only appears once
in all generated samples. This aims to reduce redundancy in
the data. The vehicles are represented by small rectangles
with sizes according to the Formula 1 rules. The difference in
color of the vehicle of interest was chosen to simplify relating
vehicles in the images to the states provided to the predictor.
The track is fully coloured in green to depict the drivable area.
The semantic images are generated using OpenGL. Without a
GPU, 100 images are generated in less than 0.1 s which is
sufficiently fast to generate these images in real-time. Image
generation is expected to be even faster if a GPU is used.

All together, we generated a dataset consisting of 363 401
training samples which includes 5 312 640 images. For evalu-
ation, a full track is excluded from training containing 37 351
samples.

IV. NETWORK ARCHITECTURE

Generally, our model contains two sub-modules

1) A vision transformer feature extractor that extracts use-
ful information F (t)

hist from the historic semantic images
I(t)

hist
2) A transformer trajectory predictor that processes the

extracted features F (t)
hist and historic state information

X (t)
hist to predict future trajectories X (t)

pred

The general structure is depicted in fig. 2.
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Fig. 2: Dataflow through the two models.

A. Feature Extractor
The feature extractor is supposed to extract useful informa-

tion from the semantic images. To reduce the model size in
training, it is favorable to train the feature extractor separately
from the trajectory predictor. In recent works, vision trans-
formers [6] have been shown to outperform traditional CNNs.
Furthermore, in [7] masked auto encoders were proposed
as a method for unsupervised pre-training of vision trans-
formers. Here, an encoder-decoder transformer architecture
is employed to reconstruct images from incomplete parts of
the original image. Ideally, the encoder will then be able to
extract meaningful features of the original images so that they
can be used for different tasks. This is very useful for our
application as hand-designing features for supervised training
of the vision transformer is difficult and end-to-end-training
of the complete model is computationally expensive and very
time consuming. In [7] different ViT models are proposed. For
our needs, the base version with patch size 16 seemed to be
sufficiently complex to extract useful features while allowing
for fast training. The ViT will process batches of images of
size H ×W × C to batches of feature vectors of size nfeat.

B. Trajectory Transformer
The trajectory transformer is the core part of the prediction

framework. The underlying structure of the problem poses one
main challenge - available information needs to be processed
considering relations over two dimensions:

1) Time: understanding the evolution of states over time
both for prediction and history is crucial to make mean-
ingful predictions

2) Number of vehicles: every action taken by a driver
is dependent on the other drivers, the other drivers’
histories and the other drivers’ future actions

For best results, it is crucial to not separate these two di-
mensions but rather consider both when making predictions.
Flattening these two dimensions into one dimension with
variable sequence length (scaling with number of vehicles
and time history) results in suitable inputs for the attention
mechanisms. Intuitively, this also allows the transformer to
simultaneously attend and reason over both dimensions. The
key challenge here is to still keep track of the affiliation of
single entries in time and agent domain. Therefore, we make
adaptations to the original transformer architecture as shown
in fig. 3.
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Fig. 3: Network structure: The Decoder and Encoder combined
with the ViT. Historic state information X (t)

hist together with
features from the ViT are fed into the transformer which
produces the predicted future trajectory X (t)

pred.

1) Agent-aware multi-head attention: As the standard at-
tention mechanism proposed in [3] only models dependen-
cies over one dimension using 1D-positional encoding, we
extended it to 2D positional encoding as proposed in [6]. As
opposed to 1D-positional encoding, here two encodings are
applied - one for time and one for the vehicle id. Each of these
two encodings is applied to half of the entries in the feature
vector ultimately leading to one half of the feature vector
encoding time and one half encoding the vehicle id. Secondly,
the standard multi-head attention in each sublayer of the trans-
former is replaced by the agent aware attention mechanism
proposed in [5]. The mechanism treats the attention between
the same vehicle and pairwise different vehicles separately.
This is achieved by using two separate weight matrices in
combination with two corresponding masks, which are inverse
to each other. The first mask only allows entries to attend to
other entries belonging to the same vehicle but to arbitrary
entries along the time dimension. Conversely, the second mask
allows attention to all time steps and only other vehicles. This
ideally allows the network to separately optimize parameters
towards predicting meaningful trajectories, while also gaining
awareness of other vehicles.

2) Encoder: Our encoder structure is shown in fig. 3 and
matches the original transformer structure introduced in [3],
apart from the previously described changes. The input X (t)

hist ∈
RN×nveh×nhist×nstate is augmented to the transformer dimension
ntraf by the linear input embedding. Here, N is the batch size
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and nstate the state dimension of the vehicles. After applying
the 2D-positional encoding, it is flattened to the dimension
RN×(nveh·nhist)×ntraf and fed to the encoder.

3) Decoder: In general, the decoder structure has one
additional multihead-attention layer in each decoder-sublayer
compared to the decoder from [3], which integrates the fea-
tures provided by the ViT. The input is the right shifted,
predicted future trajectory X (t)

pred ∈ RN×nveh×(npred+1)×nstate .
The right shift is done by prepending the current state x(i,t)

of each vehicle i to the time sequence. Note that we use
auto-regressive prediction of the trajectories not only during
evaluation time, but also during training time. Similar to
[5], we experienced better results at test-time which in our
case resulted in noticeably smoother trajectories and a more
consistent evolution over time. However, since one forward
pass during training time requires to feed the outputs npred +1
times through the decoder, the improvement is achieved at
the expense of higher training time. This means, that the
initial input to the decoder is the current state x(i,t) of all
vehicles and the final output of the decoder is the predicted full
trajectory X (t)

pred ∈ RN×nveh×(npred+1)×nstate . Here, the last entry
of the time sequence is a self-defined end token. Similar to the
encoder, we at first perform an output-embedding to transform
the state-dimension nstate to the transformer dimension ntraf.
After adding the 2D-positional encoding, the input is again
flattened and fed into the decoder. Since we don’t feed the
ground truth of the predicted trajectory into the decoder, the
first self-attention layer does not require a mask to prevent
looking into the future. As usual, multihead-attention using
the encoder output is performed with the output of the self-
attention layer. The second multihead-attention layer in each
decoder-sublayer uses the given contextual features of the ViT
F (t)

hist ∈ RN×nveh×nhist×nfeat . Another embedding layer adapts the
dimension of the features nfeat to the transformer dimension
ntraf. Positional encoding is used here as well to support
the transformer in relating the vehicle-specific features to the
current representation used as the values in the multihead-
attention. After the feed-forward layer, two fully connected
layers generate the output prediction X (t)

pred.

V. EXPERIMENTS

A. Training

Training consists of multiple steps. First, the vision trans-
former is pre-trained as part of the masked autoencoder. Then,
using the pre-trained ViT, its head is trained together with
the trajectory transformer on all samples generated and lastly
fine-tuned on a dataset consisting of mostly interaction-heavy
samples. Ideally, a final end-to-end fine-tuning training step
would be beneficial but was not suitable for us as the hardware
we had access to does not allow to train both the ViT and
trajectory transformer at the same time. For all training steps,
we early-stop on convergence. We predict npred = 10 future
states using nhist = 10 historic time-steps. Training was done
on a desktop with a NVIDIA RTX 3080 with 10GB of VRAM
and a Intel Core i7-10700k with 32GB of RAM.

1) Vision Transformer: The vision transformer is trained
on a subset of all the images generated yielding a dataset
of 300000 images. The chosen hyperparameters are shown
in table I. This is exactly the ViT-Base model proposed in
[6] with a final affine layer from 768 to 1000. The final
affine layer is not trained in pre-training but rather trained
together with the trajectory transformer. The ViT is trained
using the standard masked autoencoder procedure with the
training params described in II until convergence.

Model name ViT Base
Layers 12

Hidden size 768
MLP size 3072
Patch size 16

Heads 12
Output size 1000

TABLE I: ViT Parameters

Optimizer AdamW
Batch size 32
Mask ratio 0.75

Learning rate 10−4

TABLE II: ViT Pre-Training Params

Fig. 4 shows samples of reconstructed images. It is clear
to see that the masked autoencoder is able to reconstruct the
track boundaries as well as some of the vehicles indicating that
the encoder extracts information sufficient to understand the
context. However, there are also a lot of artifacts remaining.
We think that with more data and training time, those should
become less but decided to keep it as it is as it clearly already
understands the track boundaries. After pre-training, the output
for all images of the encoder without the head are extracted
and saved.

Fig. 4: Sample reconstructed ViT images

2) Trajectory transformer: The chosen settings for the
trajectory transformer are outlined in tab. III. Additionally,
table IV shows the chosen training parameters. The trajectory
transformer is trained on all except one race tracks together
with the ViT head.
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Encoder Layers 6
Decoder Layers 6

Heads 8
Encoder/Decoder Model size 128

Feedforward Layer size 2048
Decoder Output Hidden size 256

TABLE III: Trajectory Transformer Parameters

Optimizer AdamW
Batch size 32
Dropout 0.3

Learning rate 5 · 10−5

TABLE IV: Trajectory Transformer Training Parameters

B. Results

To evaluate the performance of our model, we investigate
the mean squared positional error in the predictions as well as
the mean squared error in the heading angle over all predic-
tions of the evaluation set. The errors are shown in table V.
Considering the high speeds, we achieve satisfying positional
and heading accuracy. Moreover, evaluation performance is
close to training performance.

Squared
positional errors
[m2]

Squared heading
errors [rad2]

Training 2.1022 0.00987
Evaluation 2.6337 0.01118

TABLE V: Training and evaluation errors

Furthermore, fig. 5 and fig. 6 depict the relative squared
error frequency. While there are a lot of errors that lie below
the average error, we can observe that there are some samples
where the positional error is very large. This indicates that for
some samples, the predictions are very off which is what we
investigate in the next part.

0 10 20 30
0

0.2

0.4

Squared positional error [m2]

R
el

at
iv

e
fr

eq
ue

nc
y

Fig. 5: Testset squared positional error histogram.
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Fig. 6: Testset squared heading error histogram.

In the following, we will show some samples from the test
set that depict accurate predictions and others that capture the
most common situations where the predictor falls short. The
blue lines indicate the ground truth future driven path while
red denotes the predictions made by our model. Note that some
frames show vehicles without any predictions. This is because
those vehicles are not of interest for the interactions between
the other vehicles.
Fig. 7 shows good prediction behavior. It becomes apparent
that the predictor understands the dynamics of the vehicles
well and also predicts drivers taking the inside of the curve
in an attempt to follow the optimal race-line. Furthermore, it
predicts non-intersecting trajectories as it learnt that collision-
free trajectories are much more likely.

Fig. 7: Samples with good predictions

Fig. 8 shows samples where our model does not predict
well. We identified two main issues captured here. Firstly,
the contextual features sometimes seem to not be understood
well by the predictor. Thus, it predicts vehicles leaving the
track, as shown in the right picture. We hypothesize that this
is an issue that could be addressed by end-to-end-training the
whole system which was not possible for us for the reasons
mentioned earlier.
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Fig. 8: Samples with inaccurate predictions

Secondly, the predictor sometimes makes seemingly valid
predictions as shown in the left image that do nevertheless
not match the ground truth. This could be caused by a num-
ber of reasons. Investigating multiple samples, we identified
two likely reasons. First of all, in many situations, multiple
outcomes are equally likely and our system is not able to
capture multi-modalities. For example, the leading vehicle
could try to block the overtaking attempt by the following
vehicle or decide to maintain speed and going straight. Both
moves could be valid here but our model is not able to capture
that. Approaches as the one discussed in [5] aim to tackle
this by explicitly modeling multi-modalities but introduce
further complexity to the system. Secondly, for example for
long straights, the contextual images do not provide enough
information to predict where the vehicles will go. For instance,
consider a very long straight followed by a turn. Here, the
semantic images will most likely not contain the turn but
vehicles will prefer to stick to the side of the track yielding
the best entry to the turn. Without knowing the track, there
is no way for the predictor to accurately predict the vehicle
behavior. To solve this, more information about the track such
as the pre-computed optimal race-line could be supplied.

VI. CONCLUSION

We proposed a systematic approach for interaction-aware
trajectory prediction in autonomous racing using short-term
historic data employing transformers. Semantic images were
generated and used to capture contextual information and used
by a transformer trajectory predictor that attends both over
time and the number of agents ultimately allowing to consider
all the relations between the data available. The preliminary
results show that our approach conceptually works but falls
short in certain situations. Future work should go into end-
to-end-training of all modules as well as modeling multi-
modalities as described in [5].

VII. FINAL PROJECT REFLECTION

This section is supposed to give an overview over the con-
tributions of each group member as well as a short description
of our experiences with the project. Conceptually, all design
choices were made together as a group with no group member
being responsible to make design choices alone. In general,
we met up as the whole group for most of the project, so

that crucial decisions could be immediately discussed and the
workload was distributed equally.

In the initial phase of the project, a substantial amount of
effort went into reading papers and finding existing approaches
for our task. This was equally done by all of us. After, we
made some preliminary design choices on the basic structure
of the whole module, what the inputs and outputs of the
system should be and searched for available datasets that
matched our needs. Following the choice of our dataset a
lot of work was required to generate a usable dataset for
the actual training. We sampled the track boundaries using
the actual game (Finn, Sean) to gather maps of the tracks.
The telemetry data needed to be subsampled with a fixed
frequency, labeled for interaction and outliers were sorted out
(Niklas). For the generation of the images, a filter was required
to split up the continuous race data into individual situations
and label involved vehicles (Sean). The sampled track points
from the game needed further processing, which is why we
implemented a GUI tool to easily manipulate sample points
(Finn) and preprocessed all tracks (Sean, Niklas). For efficient
image generation and visualization, we further subsampled
the tracks based on curvature (Niklas) and implemented a
visualization in OpenGL (Finn) from scratch from which
the images were generated. We aimed to make this step as
computationally efficient as possible as a lot of images were
needed. To our surprise, especially the data generation and
data management required a lot of work. Most significantly,
managing the huge amount of data (∼ 5million images),
reducing the bottleneck induced by disk i/o and the hardware
requirements posed by the complex models and generating the
dataset efficiently in the first place took a very long time. Most
of these issues are usually already dealt with if using publicly
available datasets which is why we underestimated the amount
of effort needed for this. At this point, we slightly split up the
responsibility for the implementation of the main remaining
points. Finn spend a lot of effort on efficient data generation
and implementing dataloaders to handle the data required for
the training of the feature extractor and the transformer. Sean
and Niklas meanwhile implemented the network structures for
feature extraction and the trajectory transformer, respectively.
For the final training, evaluation and documentation we again
worked collectively.
Lastly, we encountered the challenge to make training work in
the first place with the hardware that was available to us. The
limitation in computing power and machines to run training
on forced us to omit some parts of our original code. For
example, we implemented an additional Convolutional Neural
Network (CNN) as a comparison to the ViT but were not
able to involve it into our final results as we prioritized the
ViT for our approach. In hindsight, we should have dealt with
acquiring suitable hardware earlier as this was an issue that
definitely limited our options in the end.
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