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Abstract—The Mobile Robot Campus Dataset (MRCD) is a
valuable resource to evaluate advanced localization, mapping,
and navigation algorithms. It comprises a collection of data
sequences recorded in a campus environment using a mobile
wheeled robot, which present diverse outdoor scenery and
challenges for robot algorithm development and benchmarking.
MRCD features key high-quality sensor modalities of our robot,
a highly accurate Ground Truth (GT) reference based on
continuous-time registration, and a point cloud of the campus
with centimeter range resolution. To demonstrate the capabilities
of MRCD, we benchmark several state-of-the-art Simultaneous
Localization and Mapping (SLAM) algorithms. The results reveal
a performance gap between vision- and lidar-based algorithms,
highlighting the need for further development of vision-based
techniques to enable cost-efficient sensor setups. MRCD offers
a robust platform for testing and benchmarking, aimed at
contributing to autonomous robot research.

Index Terms—ROS2, Dataset, Robotics, Outdoor, SLAM, LIS-
LAM, VISLAM, Continuous Ground Truth

I. INTRODUCTION

S IDEWALK autonomous delivery robots (SADR) are an
emerging solution to the challenge of last-mile delivery,

promising to improve efficiency, safety, and sustainability in
urban logistics for increasingly congested urban areas [1].
Accurate localization is a core requirement for their operation,
typically achieved using SLAM, which enables robots to map
their environment while estimating their position. SLAM has
several variations, including Light Detection and Ranging
(LiDAR)-based, visual, visual-inertial and LiDAR-inertial ap-
proaches. Developing and benchmarking SLAM algorithms
requires diverse datasets with GT data in the form of maps
or trajectories for evaluating algorithms. Although there are
several datasets (e.g. [2], [3], [4]), few focus on the point of
view and the unique challenges faced by SADR in pedestrian
environments.

This paper presents MRCD, a multimodal dataset for SLAM
research in public sidewalk settings. It includes eight se-
quences collected in three distinct areas of a university campus
using a SADR-prototype (see Figure 1) equipped with 3D
LiDAR, stereo cameras, Inertial Measurement Unit (IMU),
wheel encoder (WE) and Real-Time Kinematic (RTK) Global
Navigation Satellite System (GNSS). Accessible for the Robot
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Operating System 2 (ROS2), MRCD provides continuous-
time GT and a Terrestrial Laser Scanner (TLS)-scanned 3D
point cloud covering 138.073m2 across varied sceneries and
weather conditions. In addition, a benchmark of state-of-the-
art (SOTA) LiDAR-Inertial SLAM (LI-SLAM), Visual-Inertial
SLAM (VI-SLAM), and Visual SLAM (V-SLAM) algorithms
highlighting the dataset’s unique challenges is provided.

MRCD aims to contribute significantly to the research com-
munity by providing a realistic and comprehensive foundation
for developing SLAM algorithms, pushing the boundaries of
autonomous robot navigation in semi-structured urban envi-
ronments.

Fig. 1. Transport robot Laura used for recording the dataset.

II. RELATED WORK

MRCD adds to the growing number of datasets designed for
autonomous systems. They can be categorized by their sensor
platform: handheld, road-bound vehicle, robot, and aerial.

As MRCD was recorded using a SADR, related work fo-
cuses on ground-based platforms. Road-bound vehicle datasets
are excluded here due to their road-centric perspective, which
is less relevant for SADRs. Object Detection (OD) datasets are
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also disregarded due to MRCD’s primarily targeting SLAM-
application. However for completeness, OD-related and road-
centric datasets are summarized in the Supplementary Mate-
rial. Table I highlights handheld and robot datasets, including
details on sensor types, environment scale and GT generation,
following the characterization of [4].

Handheld datasets typically include IMU and camera
recordings, with LiDAR only available in TUM RGB-D [5],
NCD [10], VECTor [11], Hilti 2022 [12], Hilti-Oxford [13]
and MCD [2]. Among these MCD is the only one that also
provides GNSS data. Naturally, none of them include WE data.
With respect to scale, only TUM VI [8], UMA-VI [9], Hilti
2022, Hilti-Oxford and MCD feature environments larger than
500m2. Outdoor sequences which are relevant for SADR are
found in UZH-Event [6], NCD, PennCOSYVIO [7], TUM VI,
Hilti-Oxford and MCD. Most of the indoor handheld datasets
use Motion Capture Systems (MoCap) for providing GT poses.
The 2022 Hilti dataset offers GT poses for outdoor sequences
received from a Robotic Total Station (RTS), while VECTor
applies Scan Matching (SM) techniques, UMA-VI focuses on
a Structure-from-Motion (SfM) approach and PennCOSYVIO
relies on AprilTag detection. NCD and Hilti-Oxford generate
GT solely via SM. MCD provides both GT poses and maps
using Survey-grade prior Map Continuous-Time Registration
(SMCTR) and TLS for map generation, the same techniques as
applied in MRCD. Besides MCD, handheld datasets providing
a TLS-generated GT map are NCD, VECTor and Hilti-Oxford.

Robot-based datasets typically offer a wider range of sen-
sor modalities, often combining LiDAR, GNSS, and IMU
data, along with camera recordings. Unlike handheld datasets,
robot-mounted sensors provide a distinct point of view,
which is closer to the ground level and captures motion
dynamics reflecting the real-world conditions, such as IMU
disturbances from uneven terrain or vibrations from turns.
Datasets like NCLT [14], Rosario [15], Nebula [17], and
FusionPortableV2 [4] also include WE, allowing accurate mo-
tion capture from mobile robot platforms. While many robot
datasets are limited to small environments (<500m2), some,
such as M3ED [19], Hilti 2024 [3] and FusionPortableV2
cover large-scale areas, making them suitable for advanced
navigation and mapping research.

GT pose generation varies across datasets. NCLT and
M3ED use RTK-GNSS and SLAM-based methods, while
M2DGR [16] combines RTK-GNSS, MoCap, and a Laser
Tracker (LT). FusionPortable datasets (V1 [18], V2) use
MoCap and RTK-GNSS, enhanced by SM. Nebula relies
entirely on SLAM-based techniques. M3ED distinguishes with
its SLAM- instead of TLS-based GT map generation. Simi-
larly, FusionPortableV2 combines MoCap, RTK-GNSS, and
SM to generate GT maps. Only M2DGR, FusionPortable
and FusionPortable2 feature 4-wheeled robots operating in
pedestrian spaces, but only FusionPortable2 includes WE.
M3ED and Hilti 2024 are based on legged or tracked robots,
other focus on non-urban settings (Rosario, Nebula).

This highlights the lack of datasets tailored to SADRs.
MRCD addresses this by capturing realistic robot motion, in-
cluding turning-induced vibrations using a robot with consider-
able extrinsics between sensors for SADRs in diverse outdoor

settings. It combines an extensive set of sensor modalities with
SMCTR for GT poses and TLS for GT maps [21]. MRCD
is also the first dataset to provide a native ROS2 Humble
benchmark for evaluating SLAM algorithms, commonly used
in modern robotics, making it a comprehensive resource for
large-scale mobile robot research.

III. ROBOT

MRCD is collected using the wheeled robot Laura, shown
in Figure 1, which has been developed for the TaBuLa-
LOG project [22]. Laura combines both high-fidelity LiDAR
and cameras, making it a multi-sensor platform particularly
suitable for dataset recording. The robot’s basis is a Clearpath
Jackal enhanced with an Nvidia Jetson Orin, an upgraded
Onbot-PC (i9-13900T, 64 GB DDR5 RAM), high-end sensors,
and a transport box. Due to sidewalk traffic regulations, the
robot’s maximum speed is limited to 6 km

h . The robot is
equipped with WEs, a 3D LiDAR on top, several stereo
cameras, an IMU and an RTK-GNSS module. The LiDAR, a
Velodyne VLP-16, provides a 3D point cloud with a frequency
of 10Hz. The forward-facing passive stereo camera is a Stere-
olabs ZED 2, which offers two 30Hz video streams, a 200Hz
IMU data stream, and a 10Hz point cloud. Additionally,
a ground-facing active stereo camera, the Intel RealSense
D435, provides a 15Hz point cloud and two 30Hz video
streams. LiDAR and cameras are placed in locations to assist
in localization, obstacle detection, and velocity control based
on ground conditions. The RTK-GNSS, an EMLID Reach
M2, enables accurate global localization. LiDAR and stereo
cameras were externally calibrated using the atom calibration
framework [23]. Camera data is anonymized to comply with
European data protection regulation. Details on the calibration
and anonymization process, the ROS2 topics included in the
dataset, and additional sensor information can be found in the
Supplementary Material.

IV. DATASET ANALYSIS

The dataset was recorded in winter 2025 on the cam-
pus of the Hamburg University of Technology (TUHH), us-
ing the robot’s manual driving mode. It covers an area of
559m×247m (137.073m2). It includes a variety of public
pedestrian spaces featuring diverse terrains, such as uneven
surfaces (e.g. cobblestones, bumpy walkways), vegetation,
buildings, and slopes. A total of eight sequences were recorded
across three main areas: A I & A II in Alley, G I & G II in
Grove, and T I - T IV in Town. The sequences vary in length
from 202m to 787m and cover a total of 2895m, adding up
to 1 h recording time. An overview of the routes is provided
in Figure 2.

Alley − spans from the northern part to the center of the
campus. Two sequences were recorded. The first, featuring
an average pace of 6 km

h (walking speed), includes a steep
ramp and navigation within a wide courtyard, bordered by tall
buildings. The second, recorded at a pace of 2 km

h , crosses ad-
ditional narrow vegetation-lined corridors and forms a looped
back-and-forth track where most locations are passed twice.
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TABLE I
DATASET COMPARISON ACROSS SENSOR MODALITY, ENVIRONMENT SCALE (SMALL (< 500m2), AND LARGE (> 500m2)) AND GT FORM.

Dataset
Sensors Modality Environment Scale

GT Pose GT Map
IMU Camera LiDAR GNSS WE Small Large

H
an

dh
el

d
Se

tu
ps

2012 TUM RGB-D [5] ✓ ✓ ✓ 0 0 ✓ 0 MoCap 0
2017 UZH-Event [6] ✓ ✓ 0 0 0 ✓ 0 MoCap 0
2017 PennCOSYVIO [7] ✓ ✓ 0 0 0 ✓ 0 Apriltag 0
2018 TUM VI [8] ✓ ✓ 0 0 0 ✓ ✓ MoCap 0
2020 UMA-VI [9] ✓ ✓ 0 0 0 ✓ ✓ SfM 0
2020 NCD [10] ✓ ✓ ✓ 0 0 ✓ 0 SM TLS
2022 VECTor [11] ✓ ✓ ✓ 0 0 ✓ 0 MoCap, SM TLS
2022 Hilti [12] ✓ ✓ ✓ 0 0 ✓ ✓ MoCap, RTS 0
2023 Hilti-Oxford [13] ✓ ✓ ✓ 0 0 ✓ ✓ SM TLS
2024 MCD [2] ✓ ✓ ✓ ✓ 0 0 ✓ SMCTR TLS

R
ob

ot
Se

tu
ps

2016 NCLT [14] ✓ ✓ ✓ ✓ ✓ ✓ 0 RTK-GNSS, SLAM 0
2019 Rosario [15] ✓ ✓ 0 ✓ ✓ ✓ 0 RTK-GNSS 0
2022 M2DGR [16] ✓ ✓ ✓ ✓ 0 ✓ 0 RTK-GNSS, MoCap, LT 0
2022 Nebula [17] ✓ 0 ✓ ✓ ✓ ✓ 0 SLAM TLS
2022 FusionPortable [18] ✓ ✓ ✓ ✓ 0 ✓ 0 MoCap, RTK-GNSS, SM TLS
2023 M3ED [19] ✓ ✓ ✓ ✓ 0 ✓ ✓ RTK-GNSS, SLAM SLAM
2024 Hilti [3] ✓ ✓ ✓ 0 0 ✓ ✓ SM TLS
2024 FusionPortableV2 [4] ✓ ✓ ✓ ✓ ✓ ✓ ✓ MoCap, RTK-GNSS, SM TLS
2025 MRCD [20] (Ours) ✓ ✓ ✓ ✓ ✓ 0 ✓ SMCTR TLS

Grove − covers the southern campus and is characterized
by dense vegetation and a central pond. Two looped sequences,
in both clockwise and counterclockwise directions, follow
mostly flat paths bordered by grass, bushes and trees.

Town − is located in the northern part of the campus,
featuring tall buildings and cobblestone paths that challenge
sensor perception. It includes 2 unidirectional loops around 4
buildings, a short sequence through courtyards with narrow
corridors and slalom course in between flower beds, and a
sequences among large trees on cobblestone terrain.

MRCD offers a diverse and realistic set of environmental
conditions, suitable for evaluating navigation, mapping, and
perception algorithms in outdoor pedestrian zones.

V. SURVEY MAP CONTINUOUS-TIME REGISTRATION

For the development and evaluation of SLAM algorithms,
an accurate GT is needed. We use the method presented in
[2]. It aligns raw LiDAR point cloud data with a pre-existing
map through a continuous optimization process that explicitly
models the deskewing process. The preexisting map is a 3D
point cloud of the TUHH campus premises. It was collected
in 125 scans using a Faro Focus S70 and Faro Focus Premium
TLS. The point cloud used to generate the GT has 5 cm
resolution. Optimization takes into account factors such as
initial pose estimates, LiDAR data alignment, and IMU sensor
readings, using a B-spline-based continuous path estimate and
correcting for any biases in the IMU. All of these elements
are optimized with respect to measurement uncertainty.

VI. BENCHMARK ON SLAM ALGORITHMS

MRCD includes a benchmark of SOTA SLAM algorithms
on each sequence, comparing pose estimates with GT using the

Fig. 2. GT trajectories of recorded routes on TUHH campus.
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evo-package [24]. As our robot operates on ROS2 Humble, we
focus on algorithms natively supported in this environment and
exclude those requiring bag file conversion or implementations
for other ROS versions. All algorithms are evaluated on a
workstation equipped with a 24 core Intel i9 13900K, 128GB
RAM, and two NVIDIA RTX 4090 GPUs.

LI-SLAM − We evaluate 3 open-source LI-SLAM algo-
rithms: Fast-LIO (FL) [25], 2D & 3D Google’s Cartographer
(GC) [26], and NAV2 SLAM Toolbox (ST) [27]. FL uses
Kalman Filtering with direct feature association and parallel
KD-Tree search. GC relies on submap-based matching and
loop closure via a branch-and-bound approach. ST applies
sparse graph optimization with loop closure detection and scan
matching, tightly integrated with the ROS2 navigation stack.

V-SLAM − We benchmark NVIDIA’s Isaac ROS Visual
SLAM (NIR) [28], OPEN-VINS (OV) [29], RTAB-MAP
(RTM) [30], and ORB-SLAM 3 (ORB3) [31]. NIR is a GPU-
accelerated graph-based stereo-inertial VI-SLAM method with
loop closure for drift correction. OV uses a filter-based visual-
inertial approach. RTM offers real-time stereo-inertial map-
ping based on an incremental appearance-based loop closure
detector. ORB3 provides stereo visual-inertial SLAM together
with multi-map fusion, but due to a persisting issue with pose
jumps, only the visual stereo mapping was evaluated.

Table II lists the Absolute Trajectory Error (ATE) of all
algorithms with the best performance highlighted in bold and
the second-best underlined for each LiDAR- and visual-based
method. We consider an algorithm to have failed a sequence,
denoted by −, if it consistently aborts at a particular location
over several runs before progressing halfway through the tra-
jectory. For all algorithms, we only adjust but do not optimize
input parameters. For RTM, we additionally reduce playback
speed to 0.7 due to significantly poor real-time performance,
which would prevent any comparison. For further insights
on the algorithm performance, the results of the benchmarks
for LI-SLAM and V-SLAM compared to GT are plotted and
provided in the Supplementary Material.

All LI-SLAM algorithms demonstrate stable performances
with an average ATE of 0.685m. As expected, 2D algorithms
show higher ATE in sequences with greater changes in altitude
(A I, A II). On average, ST performs worse compared to all
other LI-SLAM algorithms, though outperforming GC2D in
some sequences (A I, G I). Noticeable, although sequence
T II follows approximately the same trajectory as T I but in
opposite direction, the results on T II are overall worse. In
T II, the trajectory initially traverses an open space with few
distinctive geometric features, which does have a small but
detrimental impact on performance. On sequences T III and
T IV, which provide strong serpentine and shaky motions, the
geometric robustness of LI-SLAM is clearly exhibited.

In contrast, V-SLAM are significantly less accurate with an
average ATE of 26.24m. NIR performs best overall, especially
in 2D, where accumulated altitude drift can be avoided, leading
to more stable and accurate results, even in sequences with
large differences in altitude. OV demonstrated overall stable
performance, with only T VI’s characteristic curves causing
recurring crashes. In all sequences, RTM aborts mapping when
losing visual odometry, but its memory-based design enabled

sequential progress. However, navigation in featureless en-
vironments, such as the open areas of T I and T II, and
visual monotony when driving down a ramp in A I and A II,
prevented continuation. RTM’s trajectories on T III and T IV
exemplify half-processed sequences that aborted early. ORB3
demonstrates stability, but also shows a significant drop-off in
sequences with open areas.

Despite higher computational demand, the results confirm
LI-SLAM’s robustness and V-SLAM’s sensitivity to scene
structure and lighting as in [2]. It should be noted that a
strong variation in the performance of V-SLAM over multiple
runs affected the reproducibility of the results. One reason for
the fluctuation could be the playback approach of ROS2 bags
which prioritizes realistic performance over reliable communi-
cation, causing message drops at runtime. Hence, the already
sparse visual features and strong dynamic motion, which cause
distortion and motion blur, hamper feature extraction and
image stitching.

TABLE II
ATE IN m OF LI-SLAM AND V-SLAM ALGORITHMS PER SEQUENCE.

A I A II G I G II T I T II T III T IV

LI-SLAM
ST 0.77 1.76 0.33 0.55 1.05 2.93 0.27 0.43
GC2D 3.08 1.47 0.43 0.41 0.83 0.87 0.13 0.14
GC3D 0.43 0.70 0.10 0.16 0.46 1.65 0.10 0.11
FL 0.20 0.34 0.09 0.20 0.59 1.03 0.15 0.13

V-SLAM
NIR2D 14.04 40.75 17.49 19.49 16.32 22.85 5.67 6.53
NIR3D 15.70 50.93 16.25 19.84 19.72 28.54 5.66 9.24
OV 30.48 58.36 9.27 9.04 24.99 39.57 8.53 −
RTM − − 27.15 24.74 − − 12.63 16.81
ORB3 6.97 46.21 5.97 11.75 30.11 25.41 15.19 20.99

VII. CONCLUSION

This paper presents MRCD, a dataset for outdoor mobile
robotics. It features various high-resolution sensor recordings,
continuous-time GT, and characteristic sequences captured
with a wheeled robot. Benchmarking a range of SLAM
algorithms on MRCD reveals sequence-specific challenges
and underscores the dataset’s relevance for SLAM algorithm
development. MRCD aims to support the development of lo-
calization and mapping algorithms by exposing current limita-
tions. Especially in V-SLAM, low computational effort carries
great potential for lightweight mobile platforms, yet remains
hindered by sensitivity to visual disturbances. Researchers and
practitioners are invited to leverage MRCD to tackle real-world
challenges in outdoor mobile robotics. Currently, MRCD only
features daytime single-season recordings, which will be ex-
tended with nighttime sequences and seasonal variations. In
future work, the present low IMU-frequency will be addressed
while additional segmentation annotations will be included.
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de Aguiar, André, Ferreira Pinto Dias Rato, Daniela, Baptista Neves
dos Santos, Filipe, P. M. de Jesus Dias, and Ferreira dos Santos, Vı́tor
Manuel, “Atom: A general calibration framework for multi-modal, multi-
sensor systems,” Expert Systems with Applications, p. 118000, 2022.

[24] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

[25] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter,” 2021. [Online].
Available: https://arxiv.org/abs/2010.08196

[26] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1271–1278.

[27] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” Journal of Open Source Software, vol. 6, no. 61, p. 2783,
2021. [Online]. Available: https://doi.org/10.21105/joss.02783

[28] “Isaac ros visual slam,” https://github.com/NVIDIA-ISAAC-ROS/isaac
ros visual slam?tab=readme-ov-file, accessed: 2025-03-27.

[29] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A research platform for visual-inertial estimation,” in Proc. of the IEEE
International Conference on Robotics and Automation, Paris, France,
2020. [Online]. Available: \url{https://github.com/rpng/open vins}
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TABLE III
OVERVIEW OF SUPPLEMENTARY MATERIAL

Type of Data Content (Filename/Location) Description

Supplementary Material Text PDF Supplemental information complementing the paper by providing
further info on Related Work, Sensor Calibration, Anonymization.

Git Hub Git Hub
MRCD’s official Github page providing detailed information on
complete content, all relevant links, docker images, user guide,
SLAM-tutorials, and more.

Dataset Full https://doi.org/10.15480/882.15125 8 Sequences with all topics recorded in ROS2 bag format.

Dataset Full compressed https://doi.org/10.15480/882.15125 8 Sequences including all topics in ROS2 bag compressed format.

Dataset without camera topics https://doi.org/10.15480/882.15125 8 Sequences without camera topics in ROS2 bag format.

Dataset without camera topics compressed https://doi.org/10.15480/882.15125 8 Sequences without camera topics in ROS2 bag compressed format.

GT https://doi.org/10.15480/882.15125 Ground Truth Data for all 8 sequences in .csv files in continuous
format as well as sampled with 10Hz.

GT Map https://doi.org/10.15480/336.5041 Ground Truth Point Cloud of TUHH-Campus in .e57 format.


