
Project Thesis
PRO-064

Implementation of an interface for the
application of reinforcement learning in

autonomous driving
Implementation einer Schnittstelle für die Anwendung von

bestärkendem Lernen im autonomen Fahren

by
Sean Maroofi

Supervisors: Prof. Dr.-Ing. R. Seifried
Chenran Li, M.Sc.

Hamburg University of Technology (TUHH)
Institute of Mechanics and Ocean Engineering

Prof. Dr.-Ing. R. Seifried
Prof. Dr.-Ing. M. Tomizuka

Hamburg, February 2023

Contents

1 Introduction 3

1.1 State of the Art . 4

1.2 Goal of this Work . 5

2 Reinforcement Learning 7

2.1 Fundamentals . 7

2.1.1 Markov Decision Process 8

2.1.2 Goal in Reinforcement Learning 9

2.1.3 Value Functions . 10

2.2 Selection of an Algorithm . 11

2.2.1 On-policy vs Off-policy . 11

2.2.2 Deep Q-Learning . 12

2.2.3 Deep Deterministic Policy Gradient 13

2.2.4 Twin Delayed Deep Deterministic Policy Gradient 14

2.2.5 Soft Actor Critic . 14

2.2.6 Choosing an Algorithm . 15

2.3 Components of Soft Actor Critic 16

2.3.1 Maximum Entropy Augmentation 16

2.3.2 Soft Policy Iteration . 17

2.3.3 A Soft Variant of Actor Critic 18

2.3.4 Updating the Target Network 19

ii Contents

2.3.5 Reparameterization . 20

2.3.6 Likelihood of Bounded Actions 20

3 Application to the Simulation 21

3.1 The General Structure . 21

3.1.1 Server-Client Communication 22

3.1.2 External Prediction and Planning 23

3.2 Adding a Reinforcement Learning Framework 24

3.2.1 Observation and Action Choice 24

4 Evaluation Of The Framework 29

4.1 Parameter Settings . 29

4.2 Lacking Knowledge Of Traffic Rules 30

4.3 Reward Shaping . 32

4.3.1 Termination States . 32

4.3.2 Situational Rewards . 33

4.3.3 Ongoing Rewards . 34

4.3.4 Reward Function Evaluation 35

4.4 Mastering Navigation Through A Roundabout 39

4.4.1 Training Duration . 43

5 Conclusion and Outlook 47

Bibliography 50

Appendix 55

A.1 Contents Archive . 55

Contents 1

Acknowledgement

I would like to thank Professor Masayoshi Tomizuka and Dr. Wei Zhan for the
opportunity to work on this research topic in the MSC -Lab. Special thanks to
Chenran Li for direct support and extensive guidance throughout the progress of
this work.

Chapter 1

Introduction

The theoretical origin of artificial intelligence (AI) approaches go back to the
1950s, but it has been in recent years that technological resources reached a level
in which the realization of such algorithms is possible and comfortable to han-
dle. AI applications require a large amount of computation power and highly
optimized utilization of hardware components in order to be efficiently deployed.
With the increase in popularity of studying AI in various research fields several
commercial and open-source libraries have been developed which allow simple
application and straightforward handling of AI-algorithms and simulation envi-
ronments. Autonomous intelligent systems promise to solve tasks successfully
and more reliably than humans because of their ability to learn and remember,
which led to an increase of their study and application for autonomous driving.
But the realization of a fully self-driving vehicle is challenging because of the
systems complexity. Autonomous vehicles need to drive safely in dense urban
scenarios observing their surroundings and make the correct decision in any sit-
uation. On highways an autonomous vehicle needs to be able to achieve safe line
changing and accelerate and break if necessary. If an animal or human crosses
the street, the vehicle needs to react in time and avoid collisions while not en-
dangering passengers. The amount of tasks and requirements are countless and
make autonomous driving a complex and difficult problem to solve.
One area of AI are machine learning (ML)-applications in which an intelligent
system learns to perform specific tasks. Reinforcement learning (RL) is a sub-
field of ML in which an intelligent agent takes actions in a provided environment.
Performed actions are rewarded and the agent’s goal is to achieve the highest
score by maximizing the received rewards. Applying RL to autonomous driving
tasks is promising as the driving process can be modeled as a sequential decision
problem with probabilistic transitions and feedback returned by the environment
[Forbes02]. Several work has been reported in which vehicles successfully learned
to navigate through urban scenery [SavariChoe21] or execute key driving maneu-

4 1.1 State of the Art

ver such as lane switching [NaveedQiaoDolan20].
To work on topics in the field of autonomous driving, the Mechanical Systems
Control Lab of Professor Tomizuka developed a traffic simulation over years. It
includes a compact dataset containing recorded real-life data of interactive urban
driving scenarios from different countries [ZhanEtAl19]. This simulation has been
used to study trajectory prediction of vehicles in complex traffic scenario with
close contact of traffic attendees as in [JiaEtAl21] or [ZhanEtAl21]. Additionally,
the simulation was equipped with an interface to offer simple and straight for-
ward trajectory planning algorithms.
To extend research into the field of RL-applications in traffic scenery, the devel-
oped simulation environment can be utilized for applying RL-algorithms. For this
purpose a RL-framework for comfortable and straight forward implementations
of RL-algorithms is necessary.

1.1 State of the Art

A popular choice for decision making in autonomous driving is to apply
non-learning model-based algorithms. Usually these require to design a driving
policy manually as described in [PadenEtAl16]. The procedure usually starts
with a routing planning phase in which a route through the road network of an
urban environment is chosen. It is followed by a behavioral layer deciding on
an appropriate driving task such as lane following, lane changing, parking, etc.
Once a driving behavior is selected, a motion planning module determines a
dynamically feasible trajectory that is taking obstacles into account and ensures
a comfortable and safe vehicle motion for the passengers. Lastly, a control
system generates actuator inputs to follow the planned path with a stable
closed-loop feedback controller. However, designing a driving policy by hand can
be disadvantageous as the model might have to be modified depending on the
scenario and task in the environment [ChenYuanTomizuka19b]. Especially in
highly interactive traffic scenarios model-based approaches require either defining
motion heuristics or an accurate designed cost function to specify the planning
and decision making, which can be challenging. Furthermore, model-based
approaches require improvement and maintenance by human engineers, which
can be expensive and time consuming. [ChenYuanTomizuka19a]
One approach in autonomous driving is the incorporation of an experienced
human driver and learning the driving policy by imitating human behavior. This
procedure is called imitation learning and is highly studied in autonomous driving
tasks [CoutoAntonelo21], [BansalKrizhevskyOgale18]. In this supervised learn-
ing approach designing a policy-model or reward (cost) function is not required
and instead only expert driving data is necessary [ChenYuanTomizuka19a].
Collecting driving expert data is not difficult but can become costly and time

1 Introduction 5

consuming as a large amount of data from real-world is needed. Additionally,
the expert data generally does not include dangerous situations, which increases
a risk of lack of safety as the vehicle wouldn’t deal with such cases. Furthermore,
with a human expert driver as the supervision the vehicle will not be able
to be superior to a human driver [ChenYuanTomizuka19b]. An example for
imitation learning approach is behavior cloning (BC) which has been applied to
autonomous driving in 1989 known as the ALVINN project [Pomerleau88].
Another alternative are model-free deep RL-approaches. Model-free methods
do not estimate the dynamics of the environment and instead try to find the
optimal policy, but make us of a reward function. Dangerous situations and
busy urban scenarios can be simulated and trained with the goal of exceeding
human-level performance. The application of deep RL to autonomous driving
tasks gained in popularity as they promise high performance results, adaption
and generalization. In [FehérEtAl19] a trajectory is planned by determining
two trajectory points between a provided start state and end state. A spline
is inserted using the four points and the vehicle learns to chose the optimal
intermediate states. The authors in [NaveedQiaoDolan20] study lane changing
and lane following behavior for an autonomous vehicle. Based on observations
taken in the environment a high-level network chooses between the options of
changing the lane or staying in the current lane. The observation consists of
three historical environment states. Each state includes the ego-vehicles current
velocity, current lane-ID, ratio of change in distance for safety purposes as well
as the velocity, lane-ID and distance to the surrounding vehicles, consisting
of the obstacle-vehicle in the same lane as well as the target-vehicles in the
target-lane. Once a maneuver is chosen, a low-level controller plans a trajectory
fitting to the current state. For example, for a lane changing action with a
slower ego-velocity a more sharp trajectory is chosen while in a higher speed
situation a longer and smoother trajectory is preferred. Once a trajectory is set,
a proportional integral derivative (PID)-controller is used to follow the trajectory.

1.2 Goal of this Work

To use the simulation environment for learning-based trajectory planning an addi-
tional RL-framework is necessary. The goal is to provide an interface for simple
implementation and testing of RL-algorithms in the traffic-simulation environ-
ment. The structure of this framework is designed to stick close to the common
structure of other RL-libraries and therefore allow straight-forward adaptation
and generalization. To test the framework, a basic model-free RL-approach is
implemented, applied to a chosen traffic scenario and a vehicle is trained on the
chosen environment in order to prepare a suitable basic reward design in the first

6 1.2 Goal of this Work

place, ensuring RL is applicable when applying the interface.
First, Chap. 2 explains the theoretical background of RL and a RL-approach is
selected after a detailed discussion. Chap. 3 provides an overview of the struc-
ture of the simulation environment as well as details on how the RL-interface
is integrated together with implementation details of the algorithm chosen pre-
viously. In Chap. 4 the framework is tested and the results are evaluated and
details on the settings and the design are presented. Finally, Chap. 5 summarizes
the present work and gives an outlook on further improvements.

Chapter 2

Reinforcement Learning

Because of the continuously growing popularity in applying and improving RL-
algorithms the amount of available approaches is immense. All RL-approaches
have unique properties and are suitable for different tasks and environments.
Choosing an appropriate algorithm is not trivial, which is why in the follow-
ing a handful of common implementations are introduced and compared and an
approach is chosen after a detailed discussion eventually.

2.1 Fundamentals

A key part of AI is the notion of learning by trial and error. Instead of developing
and implementing an optimized solution to a problem by hand, a self operating
system will learn to solve the task itself. This approach is referred to as rein-
forcement learning. An agent takes actions in an environment and receives a
corresponding reward returned by the environment. During the training process
the agent learns to determine the optimal actions by maximizing the returned re-
wards. Fig. 2.1 shows a simple example of a fictional game which a RL-algorithm
could try to learn. An agent tries to reach a goal field by moving around in a
grid-based environment. Each time the agent takes an action, it receives a cor-
responding reward. For example, small negative rewards are returned for less
meaningful actions, such as moving to a neighboring field, and a larger reward
is returned for reaching a termination state which can be the desired goal or an
unfavorable state, ending the current episode. By reiterating the given problem
the agent will learn to find the optimal solution.
In the following the basics of RL are explained and essentials of the mathematical
theory are established. The notation is held close to [AbbeelLevine22].

8 2.1 Fundamentals

Figure 2.1: Example of a grid-based RL-problem. Unfavorable termination fields
(red) return negative rewards and goal state(s) a positive (green).
The agent learns to find the optimal solution (light gray)

2.1.1 Markov Decision Process

The agents current state s in the environment is represented by its state space
S. It can be discrete or continuous depending on the environment. Each state
s ∈ S contains all relevant information about the agent in the current environ-
ment step t. In some literature, as for example in [AbbeelLevine22], t is referred
to the current time step as it describes the environment at time t. Because the
later introduced simulation environment is stepped the terms environment step
and time step are used interchangeably for describing t. The transition probabil-
ity p(st+1|st) between two states s is described by the transition operator T . For
a nondeterministic environment the state transition underlies uncertainty. It pos-
sesses the Markov property if the future state is conditionally independent from
its predecessor p(st+1|st, st−1, ..., s0) = p(st+1|st). In other words, the stochastic
process is memoryless and a sequence of states has the property of a Markov
chain which is described by the two componentsM = {S, T }. If the probability
distribution over all the states at time step t is written as a vector µt with entries
µt,i = p(st = i), then T is a matrix with entries Ti,j = p(st+1 = i|st = j) and the
following linear equation holds

µt+1 = T µt. (2.1)

To specify a decision making problem the addition of action choices is necessary.
This concept is referred to as a Markov decision process (MDP) [Bellman57]. An
MDP consists of four elements M = {S,A, T , r}. In addition to the state space
S and transition operator T , the discrete or continuous action space A defines
the possible actions a ∈ A that an agent can take when being in state s while

2 Reinforcement Learning 9

r : S × A → R describes the reward function. For each state transition at time
t the agent receives a reward r(st,at). The addition of decision making adds an
additional probability. Again µt,j = p(st = i) describes the probability of state j
at time t. The probability of action k taken at time t is given by νt,k = p(at = k).
Hence the transition operator T becomes a three dimensional tensor with entries
Ti,j,k = p(st+1 = i|st = j,at = k), which changes Eq. (2.1) to

µt+1,i =
∑
j,k

Ti,j,kµt,jνt,k. (2.2)

2.1.2 Goal in Reinforcement Learning

The probability of taking action a in state s is represented by the policy πφ(a|s)
with φ denoting the parameters of the policy. A sequence of states s and the
actions a taken in each state s in a finite horizon problem for a fixed number
of time steps t = 1 . . . T can be defined as a trajectory τ = (s1,a1, ..., sT ,aT).
The probability distribution over a trajectory can be factorized into the proba-
bility πφ(a|s) of an action a taken in a state s and state transition probability
Tst+1,st,at = p(st+1|st,at),

pφ(τ) = p(s1)
T∏
t=1

πφ(at|st)p(st+1|st,at). (2.3)

This equation denotes the probability distribution for starting in s1 and following
the trajectory over a time horizon t = T . With the probability distribution pφ(τ)
the objective of RL can be defined as the expected value under the trajectory
distribution

φ∗ = arg max
φ

E
τ∼pφ(τ)

[∑
t

r(st,at)
]
. (2.4)

During the training time the goal is to shape the parameters φ that define the
policy in order to maximize the expected return of the sum of rewards under a
trajectory τ .
The factorization in Eq. (2.3) can be interpreted as a Markov chain on an ex-
tended state defined as a tuple (st,at) at time t. Then the Markov property is
denoted as p((st+1,at+1)|(st,at)) = πφ(at+1|st+1)p(st+1|st,at) for the augmented
state saugt = (st,at). The linearity of expectation allows to take out the summa-
tion operation of the expectation over the trajectory distribution and Eq. (2.4)
can be rewritten as the expected return at time t, under the state-action marginal
ρπ(st,at) summed over time

φ∗ = arg max
φ

T∑
t=1

E
(st,at)∼ρπ(st,at)

[r(st,at)] . (2.5)

10 2.1 Fundamentals

Considering Eq. (2.5) for the case T = ∞, the state-action marginal ρπ(st,at)
converges under the assumption of ergodicity (each state pair has a non-zero
transition probability) and the Markov chain being aperiodic. Then Eq. (2.1)
can be considered for k-times resulting in

µt+k =
(
st+k
at+k

)
= T k

(
st
at

)
. (2.6)

When k → ∞, ρπ(st,at) converges to a stationary distribution and µ = T µ
yields. Then Eq. (2.6) becomes an eigenvalue problem

(I − T ∞)µ = 0, (2.7)

with µ = p being the eigenvector of T ∞ with eigenvalue 1. To determine a
stationary distribution, Eq. (2.7) has to be solved.

2.1.3 Value Functions

In order to design RL-algorithms, two important values are defined. The Q-value
of a state action pair (st,at) at time t describes the total reward that is achieved
when starting in state st taking action at and following the policy afterwards.
This is described by the following equation

Qπ(st,at) =
T∑
t′ =t

E
πφ

[r(st′ ,at′)|st,at], (2.8)

where st′ denotes the successive states of st. Similarly the value function of a
state st is the sum over all time steps t→ T of the expected value of the reward
at the successive states st′ conditioned on the state st,

V π(s) =
T∑
tt=t

E
πφ

[r(st′ ,at′)|st]. (2.9)

Both values can be used to find the optimal actions in two different ways.
Possessing the current policy πφ(a|s) and knowing the Q-value Qπ(s,a) of a
state action pair (s,a) allows to improve the policy. Choosing the best action
a∗ = arg maxaQπ(s,a), an improved policy π′ can be defined with π′

φ(a∗|s) = 1.
Then the new policy π′ is at least as good or better then π.
Alternatively, the probability of a good action can be increased by using gradi-
ent based updating. The definition for the value function in Eq. (2.9) can be
rewritten as

V π(s) = E
at∼πφ(at|st)

[Qπ(st,at)]. (2.10)

2 Reinforcement Learning 11

The value function is the expected value over actions of the Q-function and gives
the average of the Q-values in s using the policy πφ(a|s). The current policy
πφ(a|s) is modified in order to increase the probability of taking a good action
a

′ for which Qπ(s,a) > V π(s) applies, because then the single action a′ is better
than the average.
These two improvement methods are used for several different implementations
of RL-algorithms.

2.2 Selection of an Algorithm

To test the RL-framework and design the reward values, an implementation of a
RL-algorithm is necessary. In past works different algorithms with different set-
tings have been applied, studying the various sub-problems arising in autonomous
driving. The amount of different deep RL-algorithms is too large to cover, which
is why instead a few common algorithms are presented and discussed in the fol-
lowing.

2.2.1 On-policy vs Off-policy

When it comes to model-free reinforcement learning there are two different types
of reaching the optimal policy. In both methods a policy is applied which the
agent follows, but they differ in the update procedure. On-policy methods fol-
low a current policy to learn the state’s values and update their policy after
the agent reached a termination state. Afterwards, the updated policy is uti-
lized to collect new information. In off-policy methods the policy is directly
updated during learning, allowing sub-optimal actions to be taken and still con-
verge to the optimal policy. Although on-policy methods improve stability in
training, they often suffer from poor sample efficiency in continuous space. Off-
policy algorithms make use of past experience, but require challenging addition
of function approximators such as a neural network (NN) to approximate non
linear functions for high-dimensional continuous spaces to ensure stability and
convergence [HaarnojaEtAl18]. Further, on-policy variants learn directly with
consecutive samples, which is inefficient due to correlations between the samples.
In off-policy variants storing experience and randomizing samples from past ex-
perience can break correlations while at the same time the behavior distribution
is averaged over the previous states when sampling from experience replay. This
can help for smoother training and avoid converging to local minimum or even
divergence in parameters of the function approximators [MnihEtAl13].

12 2.2 Selection of an Algorithm

2.2.2 Deep Q-Learning

When talking about RL-algorithms, Q-Learning is a common popular off-policy
applied variant. It estimates the Q-values Qπ(st,at) and learns to find the
optimal Q-value Q∗(s,a) = maxQπ(s,a) together with the optimal policy
π∗(a|s) = arg maxaQ∗(s,a). For this purpose, Q-Learning makes use of the Bell-
man equations to update the Q-Values recursively until convergence and Q∗(s,a)
is determined

Qπ(st,at) = E
st+1∼p

[r(st,at) + γmax
at+1

Qπ(st+1,at+1)]. (2.11)

To extend the state s to a high dimensional continuous quantity, the Q-
function can be approximated using a NN resulting in a parameterized Q-
function Qθ(st,at). This algorithms is referred to as deep Q network (DQN),
[MnihEtAl13]. It makes use of a replay buffer D remembering past experience,
and once a transition pair (st,at, r(st,at), st+1) is present, it is stored in D while
at the same time mini-batches are sampled at each time step. Additionally,
DQN implements a target network Qθ̄(st,at) together with the online network
Qθ(st,at) [KiranEtAl20]. The goal is to minimize the loss function, being a
supervised regression problem with

L(θ) = E
st,at∼ρπ(st,at)

[(yt −Qθ(st,at))2] (2.12)

and
yt = E

st+1∼p
[r(st,at) + γmax

at+1
Qθ̄(st+1,at+1)]. (2.13)

Here yt denotes the temporal difference target. It has been proven that DQN is
capable of learning control policies in several Atari games as in [MnihEtAl15].
Unfortunately, DQN works with discrete action space only, which complicates
the action selection for a physical control task with a continuous action space,
as for autonomous driving. This is due to the fact that in DQN the maximizing
action is desired, which would require an iterative optimization process at every
time step in a continuous setting. This is very slow with large and unconstrained
function approximators [LillicrapEtAl15]. One approach is to discretize the action
space, as studied in [XuEtAl16]. In terms of steering a vehicle the range of the
steering angle is close around the center and therefore a discretization might make
sense. The challenge lies in finding the right amount of steps, to ensure stable and
smooth control. Choosing too many steps may become computationally expensive
while choosing a bigger step size may lead to jerky behavior [KiranEtAl20].

2 Reinforcement Learning 13

2.2.3 Deep Deterministic Policy Gradient

Because DQN is only applicable to problems with a deterministic action space,
one approach is to consider a NN representing the policy πφ(at|st). The policy
is updated using deterministic policy gradient (DPG) which is an actor-critic
approach [SilverEtAl14]. The combination of the actor-critic approach together
with the ideas in DQN is called deep deterministic policy gradient (DDPG). It
applies a parameterized actor-network representing the policy mapping states to
actions deterministically while the critic is learned with the Bellman equations
as in Q-Learning. The temporal difference target is given by

yt = r(st,at) + γQθ(st+1,at+1)]. (2.14)

The actor-network is updated using the sampled policy gradient

∇̂φJπ(φ) = E
st∼p

[∇aQθ(st, πφ(st))∇φπφ(st)]. (2.15)

Similar to DQN, in DDPG target networks are implemented. These are a target
Qθ̄(st,at) for the Q-network and another target πφ̄(st) for the policy-network.
The weights of both target networks are updated with an exponentially moving
average

θ̄ = ζ θ + (1− ζ)θ̄, (2.16)
φ̄ = ζ φ+ (1− ζ)φ̄. (2.17)

Continuous action spaces are difficult to explore. Off-policy algorithms allow
to separate the exploration problem from the learning process, which is why
the authors in [LillicrapEtAl15] implement an additional noised policy, used to
increase exploration

π(st) = πφ(st) + εt. (2.18)
Although DDPG offers sample-efficient learning, the combination of the deter-
ministic actor-network and the Q-function suffers from extreme brittleness and
high sensitivity towards hyperparameters. This makes DDPG difficult to stabi-
lize, which leads to poorer performance of tasks with a high-dimensional action
space [HaarnojaEtAl18]. Additionally, DDPG is susceptible to small approxima-
tion errors in the network-functions, which can lead to overestimation bias over
the update process. This occurs because the learned approximated Q-function
estimates the value of a state to be greater than the true unknown state value.
While updating the policy, minor overestimation errors may develop into more
significant bias. The accumulating error may lead to an estimation of bad states
possessing high value. This leads to suboptimal policy updates, which results in
unsatisfactory actions learned by the suboptimal policy [FujimotoHoofMeger18].

14 2.2 Selection of an Algorithm

2.2.4 Twin Delayed Deep Deterministic Policy Gradient

To counter the overestimation and suboptimal policies twin delayed deep de-
terministic policy gradient (TD3) is introduced. In [FujimotoHoofMeger18] the
authors address the issues with DDPG by adding minor changes. First, an ad-
ditional Q-function is added and both networks are trained simultaneously. The
two Q-functions Qθ̄1 and Qθ̄2 are compared and the one returning a smaller value
is included in the Bellman error loss functions

yt = r(st,at) + γ min
i=1,2

Qθ̄i
(st+1, πφ1(st+1)), (2.19)

yt = r(st,at) + γ min
i=1,2

Qθ̄i
(st+1, πφ1(st+1)). (2.20)

This approach is called Clipped Double Q-Learning. It counters the overesti-
mation as the smaller Q-value of the two networks is used to regress towards
the target update. Second, in TD3 the policy is updated less frequently than
the Q-function approximators. This design allows minimization of the estima-
tion error before updating the policy, which initiates higher policy updates as
value estimates with lower variance are considered during the policy update
[FujimotoHoofMeger18].
TD3 also uses target policy smoothing regularization. A deterministic policy, as
in DDPG, can overfit to sharp peaks in the value estimate induced by the Q-
function approximators. The policy exploits these peaks and returns suboptimal
behavior. For this purpose, noise is added to the actions in practice resulting in
similar actions having a similar value. In other words, the Q-function is smoothed
out over similar actions. The noise is clipped to keep the target close to the orig-
inal action [FujimotoHoofMeger18]

yt = r(st,at) + γQθ̄(st+1, π ¯πφ(a|s)param
(st+1) + ε), (2.21)

ε ∼ clip(N (0, σ),−c, c). (2.22)

2.2.5 Soft Actor Critic

Soft actor critic (SAC) is an off-policy model-free implementation of deep RL
applicable to continuous state and action space [HaarnojaEtAl18]. It combines
an off-policy replay-buffer to use data of past experience together with an actor-
critic formulation. Similar to TD3, SAC uses two networks to approximate two
Q-functions and regresses to a single target with the shared target incorporating
clipped double Q-Learning. But instead of using the target policy, as in TD3,
the current policy is evaluated for the next state-action pairs in the target. Addi-
tionally, SAC defines a stochastic actor which makes the addition of clipped noise

2 Reinforcement Learning 15

for target policy smoothing redundant. Furthermore, SAC extends the main ob-
jective of maximizing the reward in RL-problems by incorporating a maximum
entropy framework

J(π) =
T∑
t=0

E
(st,at)∼ρπ(st,at)

[r(st,at) + αtempH(π(·|st))] , (2.23)

with αtemp denoting the weight of the entropy term. This extension allows the
agent to change its behavior to be more varying by not only maximizing expected
reward but increase exploration in the environment at the same time.

2.2.6 Choosing an Algorithm

In this work, the goal is to chose a RL-algorithm and test it on the simulation
in order to examine if RL is possible with the simulation and to find appropriate
basic necessities for the framework, such as implementing necessary helper func-
tions and shape rewards.
All of the algorithms mentioned above are applicable to continuous state space.
A single or multiple NN’s are implemented in all of these approaches to approx-
imate the Q-function(s). However, in DQN the action selection is deterministic
and therefore DQN is inapplicable to continuous action spaces. Even though
the action space can be discretized, if desired, it is unfavorable to choose a dis-
cretization method for examining the framework because this would complicate
the development unnecessarily.
DDPG performs well for example in control tasks in common environ-
ments, such as the cartpole-swing-up task or the cheetah-locomotion prob-
lem [BrockmanEtAl16]. It offers great sample efficiency but shows instability
[DuanEtAl16]. Small approximation errors can lead to overestimation bias and
poor policy updates. TD3 is proposed and addresses the problems with DDPG.
It outperforms DDPG and other RL-algorithms adding the clipped Double Q-
function trick. Around the same time SAC was proposed and showed stability
and sample efficiency. Although TD3 was shown to be superior to an earlier ver-
sion of SAC, showing stronger performance across common RL-problems, such
as HalfCheetah-v1 and the Walker2d-v1 [BrockmanEtAl16], in [HaarnojaEtAl18],
the authors mention the addition of another Q-function as in TD3. The second
Q-function network shows improved results in their experiments and outperforms
TD3 in common RL-training environments [HaarnojaEtAl18], as well as custom
environments, such as for autonomous driving [ChenYuanTomizuka19b].
The choice for a fitting algorithm is difficult as there are a variety of implemen-
tations with custom adjustments. Successful improvements, such as additional
networks and smoothing operations, are adapted and customized further in order
to improve results. For this work SAC was chosen. Recent publications have

16 2.3 Components of Soft Actor Critic

shown its strong performance in learning problems [JesusEtAl21], [DuanEtAl21].
It is stable and less sensitive to hyperparameters compared to other algorithms
[HaarnojaEtAl18]. The RL-framework added to the simulation needs to be ex-
amined in its capability of training and the reward function needs to be tuned.
Being less sensitive to hyperparameter tuning promises to lay the focus on shaping
rewards in order to complete the traffic simulation RL-training framework.

2.3 Components of Soft Actor Critic

The SAC approach is characterized by three key components. These are an
entropy maximization framework, to ensure exploration in the environment and
stability of learning, an actor-critic network consisting of two NN’s for the policy
function and value function, and an off-policy replay buffer which offers the
ability to use previously collected data for efficiency purposes.
Again st and at denote the state and action at the current time step t while
p : S × S × A → [0,∞] is the unknown transition probability, representing
the probability density of the state st+1 at the next time step. The reward
the agent receives is represented by r : S × A → [rmin, rmax] on each state
transition. Additionally, the probability distribution of a state-action tuple
(st,at) is represented by ρπ under the policy π(at|st).
As proposed by [HaarnojaEtAl18], two parameterized Q-functions are trained
independently to optimize JQ(θi) to improve the performance by countering
potential positive bias in the improvement step. The option of using a replay
buffer allows to train the value estimators and policy on off-policy data.

2.3.1 Maximum Entropy Augmentation

As described by Eq. (2.5) the objective in RL is to maximize the expected sum
of rewards ∑

t

E
(s,a)∼ρπ

[r(st,at)] . (2.24)

In SAC the reward is extended with the expected entropy of the policy over
ρπ(st). This means that the optimal policy does not only maximize the reward
but also maximizes the entropy at each visited state,

π∗(a|s) = arg max
π

∑
t

E
(st,at)∼ρπ(st,at)

[r(st,at) + αtempH(π(·|st))] . (2.25)

To regulate the effect of the entropy H in relation to the reward and control the
stochasticity of the optimal policy, a temperature parameter αtemp is introduced.

2 Reinforcement Learning 17

This adjustment of the objective motivates the agent to increase exploration while
dropping unpromising paths and additionally distribute probability uniformly
among actions with equal attractiveness.
In case of infinite horizon problems the sum of the expected rewards and entropies
can become infinite. Therefore the objective of the maximum entropy framework
can be extended with a discount factor to ensure a finite sum and therefore
convergence of the algorithm. Furthermore, the addition of a discount factor will
encourage the agent to reach the goal state faster as early rewards will be favored.
Then the objective in Eq. (2.25) becomes

J(π) =
∞∑
t=0

E
(st,at)∼ρπ

[∞∑
l=t

γl−t E
sl∼p,al∼π

[r(st,at) + αtempH(π(·|st))|st,at]
]

(2.26)

2.3.2 Soft Policy Iteration

A common approach in RL-training is to derive actor-critic algorithms from sim-
ple policy iteration. It consists of two components, the policy evaluation step and
the policy improvement step. In the case of SAC, first a formulation of soft policy
iteration is necessary. Similar to policy iteration, soft policy iteration alternates
between policy evaluation and policy improvement to maximize entropy.
In the evaluation step of policy iteration with unknown state transition the Q-
value Qπ(st,at) of a state is to be evaluated using a fixed policy π. Following
the set policy, the Q-values of each state-action pair are updated with

Qπ(st,at)← r(st,at) + γ E
st+1∼p,at+1∼π

[Qπ(st+1,at+1)] . (2.27)

In the policy improvement step the old policy π is replaced by a new policy π
′

with
π

′(at|st) =
{

1 if at = arg maxat
Qπ(st,at)

0 otherwise . (2.28)

In the evaluation step of policy iteration the policy π is determined by trying
to maximize the reward only. In soft policy evaluation the policy is optimized
in terms of the maximum entropy formulation. As described by Eq. (2.25), the
reward is augmented with the entropy term and the Q-value of a state is computed
by repeatedly applying a modified Bellman backup transition operator T π as in
Eq. (2.1) with

T πQ(st,at) = r(st,at) + γ E
st+1∼p

[V (st+1)] (2.29)

and
V (st) = E

at∼π
Q(st,at)− αtemp log π(at|st), (2.30)

with the term αtemp log π(at|st) accounting for the entropy H.
In the policy improvement step of soft policy iteration the policy is updated

18 2.3 Components of Soft Actor Critic

towards the exponential of the new Q-function that has been computed in the
evaluation step. Additionally, the choice of an updated policy is restricted by a
set of policies Π. This set can be a parameterized by a family of distributions for
example. For this purpose, the updated policy is projected into the desired set of
policies, making use of the Kullback-Leibler divergence which gives a statistical
distance measurement between two probability distributions. An improved policy
is chosen with the goal to minimize the divergence as described by

πnew = arg min
π′ ∈Π

DKL

(
π

′(·|st)
∣∣∣∣∣
∣∣∣∣∣exp(Qπold(st, ·))

Zπold(st)

)
, (2.31)

with the partition function Zπold(st) normalizing the distribution.

2.3.3 A Soft Variant of Actor Critic

For a continuous setting the Q-function and policy are estimated with function
approximators instead of iteratively running the evaluation and improvement
step until convergence. Both networks are optimized alternatively using stochas-
tic gradient descent.
In [HaarnojaEtAl18] the authors define a state value function Vψ(st), a soft Q-
function Qθ(st,at) and tractable policy πφ(at|st). These functions are parame-
terized by ψ, θ and φ. Both Vψ(st) and Qθ(st,at) are modeled as NN’s while
πφ(at|st) can be computed as a Gaussian with mean and covariance computed
with a NN, as proposed by the authors.

Update Rules

For the soft value function Vψ(st) the objective is to minimize the squared residual
error

JV (ψ) = E
st∼D

[
1
2

(
Vψ(st)− E

at∼πφ
[Qθ(st,at)− αtemp log πφ(at|st)]

)2
]
, (2.32)

with D denoting the distribution of previously state-action samples or, in other
words, the replay buffer containing previous experience. Eq. (2.32) can be opti-
mized with stochastic gradient descent

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st,at) + αtemp log πφ(at|st)) . (2.33)

In contrast to Eq. (2.32), the actions at are sampled using the current policy
instead of the replay buffer. Eq. (2.33) uses the minimum of the two Q-functions.

2 Reinforcement Learning 19

To find the optimal parameters of the soft Q-function the objective is to minimize
the soft Bellman residual error

JQ(θ) = E
(st,at)∼D

[1
2
(
Qθ(st,at)− Q̂(st,at)

)2
]
, (2.34)

with Q̂(st,at) being the expected soft Q-value for the state-action tuple (st,at)
which is given by

Q̂(st,at) = r(st,at) + γ E
st+1∼p

[
Vψ̄(st+1)

]
. (2.35)

Again stochastic gradient descent can be used to optimize Eq. (2.34)

∇̂θJQ(θ) = ∇θQθ(st,at)
(
Qθ(st,at)− r(st,at)− γVψ̄(st+1)

)
. (2.36)

In this update the additional target value network Vψ̄(st+1) is used with param-
eters ψ̄.
At last, the parameters φ for the policy are obtained by minimizing the objective

Jπ(φ) = E
st∼D,εt∼N

[log πφ(fφ(εt; st)|st)−Qθ(st, fφ(εt; st))] . (2.37)

Here the policy is reparameterized as the action at is replaced by

at = fφ(εt; st), (2.38)

in which fφ represents a function with parameters st that takes in a noise vector
εt as input, sampled from a fixed distribution. The policy πφ is now depending
on fφ implicitly. Eq. (2.37) is optimized by approximating the gradient with

∇̂φJπ(φ) = ∇φ log πφ(at|st) + (∇atπφ(at|st)−∇atQ
π(st,at))∇φfφ(εt; st),

(2.39)
with at being evaluated at fφ(εt; st). Again the minimum of the two Q-functions
is used in Eq. (2.39).

2.3.4 Updating the Target Network

In order to improve stability, [HaarnojaEtAl18] proposes adding an additional
target network to track the actual value function simultaneously, as already men-
tioned in Sect. 2.3.3. The weights of the network are updated by an exponentially
moving average between the value and target-value network’s weights including
an additional smoothing factor ζ

ψ̄ = ζ ψ + (1− ζ)ψ̄. (2.40)

20 2.3 Components of Soft Actor Critic

2.3.5 Reparameterization

For the reparameterization trick in Eq. (2.38) a squashing function tanh is applied
elementwise to sample from a bounded Gaussian distribution

fφ(εt; st) = tanh(µφ(st) + σφ(st)� εt), (2.41)

with µφ(st) and σφ(st) denoting the mean and standard deviation of the actor
network.

2.3.6 Likelihood of Bounded Actions

The log-likelihood is necessary for updating the policy network and is computed
with a change of variables in the policy, which results in

πφ(at|st) = fφ(ut|st)
∣∣∣∣∣det

(
dat
dut

)∣∣∣∣∣
−1

, (2.42)

with ut ∈ RD being a random variable with mean µφ(st), standard deviation
σφ(st) and corresponding probability density fφ and D the action dimension.
The Jacobian is a diagonal matrix

dat
dut

= diag(1− tanh2(ut)) (2.43)

and the log-likelihood of the bounded action is computed by summing along the
diagonal of the Jacobian

log πφ(at|st) = log fφ(ut|st)−
D∑
i=1

(1− tanh2(uit)), (2.44)

with uit being the ith element of ut.

Chapter 3

Application to the Simulation

The main contribution of this work was the establishment of the RL-interface by
creating necessary sub-modules, integrating helper functions and changing parts
of the logical structure behind the simulation environment. In the following an
overview of the simulation structure is provided together with implementation
details.

3.1 The General Structure

The simulation offers the ability to study behavior-related research in autonomous
driving. It makes use of the interaction dataset [ZhanEtAl19] which contains
a variety of traffic scenarios including motion of traffic attendees from differ-
ent countries. This dataset can be used to study a variety of topics relevant
for autonomous driving, such as behavior and motion prediction, BC and RL,
decision-making and planning algorithm development and more.
The structure of the simulation consists of two main threads, a main simulation
pipeline and an external predictor side as depicted in Fig. 3.1. The simulation
loop manages the communication and timings, ensuring sub-processes, such as
state updates of every vehicle, are finished before a new iteration starts. On the
predictor side the user can choose an algorithm which predicts the trajectory of
the ego-vehicle(s) for future time steps.

The user has the option to chose a traffic scenario, for example a roundabout
in a certain country including culture typical driving behavior in that area, the
duration of the scenario as well as the number of vehicles attending the scenario.
If desirable, the user can customize the initial state and design for each vehicle
with the option to provide a spawning position, orientation and velocity as well
as the size of the vehicle to represent vehicles of different types.
A single or multiple vehicles are chosen as ego-vehicles. This term refers to the

22 3.1 The General Structure

Python C++
return future plan

GRPC

Prediction Simulation

receive past plan

Figure 3.1: Server-Client connection: The prediction and simulation loop com-
municate with the Google remote procedure call (GRPC)-
interface.

agent that is controlled in its environment. Each ego-vehicle receives the exter-
nal prediction and is controlled by an internal default motion planning algorithm.
Other vehicles are tracking the trajectories in the dataset, own responsive behav-
ior to their surrounding vehicles and are driven by internal algorithms. For each
surrounding vehicle the user decides if the ego-vehicle is aware of its current state
and prediction or not. If the ego vehicle does not have knowledge about a vehicle,
it is still incorporated by all the other vehicles in their prediction.
For the RL-setup a single ego-vehicle is chosen to receive a plan from the python
side while the other vehicles continue to use internal classical planning algorithms
on the C++ side. Exactly as in the prediction setup an urban scenario is chosen
and the vehicles present during the setting together with their individual settings,
as described in Sect. 3.1. Once the simulation is started, the RL-planner can be
started. If the simulation reaches a termination state, the simulation is restarted
and the initial state of the scenario is reloaded, Fig. 3.2. The RL-planner module
is reset and information about the past episode is saved.

3.1.1 Server-Client Communication

The simulation pipeline and prediction loop are connected using the GRPC li-
brary. This extension allows the implementation of a two sided server-client
communication offering the possibility of synchronous or asynchronous messages.
To enable fast data transmission, GRPC makes use of a language and platform
neutral binary data format called Protocol-buffer. Additionally, it allows
communication to take place between a server and a client that both are imple-
mented in different languages. For this use case the simulation side is written
in C++ to offer fast computation performance. The client side uses python
to offer the ability for fast and simple implementation of prediction and plan-

3 Application to the Simulation 23

Figure 3.2: Simulation Environment: The initial state of a roundabout located
in the United States is displayed. In this case vehicle number 13 is
chosen as the agent/ego-vehicle.

ning algorithms and the usage of common python libraries such as pytorch
[PaszkeEtAl19].

3.1.2 External Prediction and Planning

The original interface for the client side includes the option to develop a predic-
tion algorithm of other vehicles future trajectories. For this purpose, the client
receives historical trajectories, including its own individual trajectory as well as
past states of other surrounding vehicles if desired. Each past trajectory contains
information about the vehicles position, velocity and orientation from the last
nhist = 10 (1 s) time steps. The client predicts the trajectory of the ego vehicle
for the next nfut = 30 (3 s) time steps. It returns a set of predicted trajectories
all equipped with a probability, denoting how likely this trajectory is to be taken
by the vehicle.
In addition to the prediction interface, a client side planning interface was de-
veloped on an older state of the simulation. This interface is implemented to
offer the possibility of simple and fast-forward python-based application of tra-
jectory planning algorithms. Instead of studying trajectory prediction and using
it for planning purposes directly, trajectory planning can be applied replacing

24 3.2 Adding a Reinforcement Learning Framework

the internal planning algorithms on the simulation side. Prior to the addition
of a RL-option, the planning interface needed to be transferred and adjusted to
the newest version of the simulation. The user now has the choice to either run
prediction or planning algorithms for the ego-vehicles.

3.2 Adding a Reinforcement Learning
Framework

The main contribution of this work is to build a training loop for the updated
planner interface. While previously there was two loops, the prediction/planner
side and the simulation itself, for the RL-framework a third separate training
loop was added which would only feature RL relevant information. The training
loop is designed to stick close to the structure of the RL-pipeline implemented
commonly, such as the OpenAI-gym library [BrockmanEtAl16] does, to ensure
simple application of algorithms.
The RL-process is visualized in Fig. 3.3. The RL-framework consists of four main
modules, the afore mentioned training loop, custom-agent-module, planning-
module and connection-module. The training loop manages the learning proce-
dure and the RL-module implements the custom chosen algorithm, in this work
the SAC-algorithm. The planning-module is responsible for trajectory manage-
ment and the connection-module communicates with the simulation which itself
serves as the environment.
Each environment step the connection loop receives the past trajectory informa-
tion of the simulation environment’s state. The information is then transformed
into an observation object suitable for the RL-algorithm which then chooses an
action based on the observation. The action is further transformed by the planner
module into a future plan and returned back to the simulation environment by
the connection module. The connection loop returns the outcome, including the
reward and current state of the simulation back to the training loop. Afterwards,
the RL-module takes all the current step information, covering the observation,
taken action, received reward and contiguous state observation, and saves it in
the replay buffer. Finally the networks are trained according to their update rules
described in Sect. 2.3.3.

3.2.1 Observation and Action Choice

In the previously applied implementations the prediction algorithms received
the nhist = 10 historical states to return a new planned trajectory consisting
of nfut = 30 states. Because the simulation is designed to receive nfut = 30

3 Application to the Simulation 25

training loop

observation

action

rewardsave transition info

train networks

RL module

choose action transform

get past info

return plan

get outcome

connection loopplanner module

Figure 3.3: Visualization of the training loop on the python side.

states a similar choice is made for the RL-planner.
While in the prediction setting the input would include additional past trajec-
tories of other vehicles the state st is reduced to only feature the ego vehicles
individual information in the RL-planner setting. The state st of each vehicle
at each environment step t consists of the xt and yt position together with the
velocities in each direction vx,t and vy,t and the orientation of the vehicle ξt

st =

xt
yt
vx,t
vy,t
ξt

 . (3.1)

In contrast to previous prediction settings, not all of the nhist = 10 trajectory
points are used by the learning planner but rather only the current state at
environment step t. The remaining state trajectory t−1 until t−9 is available in
the implementation at environment step t but not considered by the RL-module,
as those state’s information is processed previously at environment steps t − 9
until t − 1 and therefore are redundant at environment step t. While in later
applications other additional environment information is necessary to train the
agent for the current setting, the ego vehicle’s current state segot is sufficient
because the RL-framework needs to be tested and evaluated as well as basic
rewards have to be designed and tuned.
The output of the RL-module is a vector with the size of 1×2 consisting of values
for the acceleration and orientation angle of the vehicle for the next environment

26 3.2 Adding a Reinforcement Learning Framework

step

at =
[
at+1
ξt+1

]
, (3.2)

with at denoting the acceleration of the vehicle at environment step t. Using
these values a plan is generated by the planner module. The planned trajectory
consists of the nfut = 30 future states for the vehicles under the assumption of
a constant velocity and orientation for these environment steps and the plan is
returned to the simulation

st+i =

xt+i
yt+i
vx,t+i
vy,t+i
ξt+i

 =

1
2at+1 cos ξt+1∆t2 + vx,t∆t+ xt
1
2at+1 sin ξt+1∆t2 + vy,t∆t+ yt

at+1 cos ξt+1∆t+ vx,t
at+1 sin ξt+1∆t+ vy,t

ξt+i

 , (3.3)

with i ∈ [1, 30]. In the RL setting only the next environment step is evaluated and
the remaining planned states are neglected. The remaining states can be used by
other vehicles planning and prediction modules in order to plan their trajectory
if desired. In this work the other vehicles do not incorporate the agents planned
trajectory because early experiments showed unfavorable behavior learned by
the agent. In a situation, where the agent is followed by another vehicle, the
agent learned to decrease its current velocity, although it was supposed to drive
at higher speed. This behavior did occur because the vehicle behind the agent
reacted to the agents behavior and slowed down too, waiting for the agent to
accelerate again. But because of a poor reward design during that training time,
the agent would chose to not keep on driving.
In later applications the output can be changed to return steering values instead
of direct orientation actions, as this is closer to the control of an actual vehicle.
However, this requires only a conversion from steering action output to orienta-
tion information for the simulation, incorporating the vehicles dimension and is
therefore omitted for this work.
In general two main approaches in vehicle control show popularity. The first im-
plements direct control of the car with steering, breaking and acceleration actions.
Alternatively the agent learns actions defined on a behavior level, such as lane
changing, lane keeping , etc. These commands are passed on to a low level con-
troller which returns the actual trajectory [Aradi20]. For example, [FehérEtAl19]
makes use of the first approach defining an initial state and a desired end state
with a DDPG implementation, returning two intermediate points for the trajec-
tory. The end state is calculated with an empirical formula, ensuring to compute
a feasible final state which can be reached by the vehicle under constant speed
assumptions. The four points serve as basics for an inserted spline which is tak-
ing the gradients of the initial and end states into account. Another approach
is a combination of direct control and behavior based action choices, as done

3 Application to the Simulation 27

by [NageshraoTsengFilev19]. It separates longitudinal and lateral tasks. Longi-
tudinal actions such as acceleration and braking are returned as direct control
commands while lateral tasks contain stay in lane or change in lane commands.
The steering command is then obtained using a feedback controller.

Chapter 4

Evaluation Of The Framework

In order to ensure the capability of learning with the implemented framework,
basic SAC was implemented and applied to a chosen traffic-scenario. A key part
of the framework is a suited reward function which provides information to the
agent about its decision making. Finding an appropriate reward function can be
challenging as different types of criteria need to be considered to rate an agents
action. Valuing criteria have to be chosen and their values have to be tuned
relatively in order to teach the agent its mistakes.

4.1 Parameter Settings

One main reason for the choice of SAC was its stability towards hyperparameter
tuning. The majority of the parameters wouldn’t effect the training process itself.
The training settings are adopted from the original paper itself [HaarnojaEtAl18].
Tab. 4.1 shows the settings for the networks. The Adam-optimizer is chosen to
update the networks weights and ReLU functions were used for non-linearity oper-
ations. All networks use the same values for their learning rates αact = αcri = αval.
Two hidden layers where chosen for all networks, both consisting of 256 units per
layer.
Tab. 4.2 lists all parameter settings for the SAC algorithm. Similar to the NN
parameters, the values are chosen to match the paper [HaarnojaEtAl18]. A value
of 0.99 was chosen for the discount factor. The replay buffer has space for storing
1 · 106 samples and each minibatch contains 256 samples. Each environment step
is followed by a gradient step. The target smoothing coefficient needs to have a
small value ζ = 0.005 because the target weights should be updated slowly. The
reward scale is a main tuning parameter in SAC as it represents the temperature
coefficient of the energy-based policy and determines it stochasticity. A smaller
reward scale results in a uniform policy generation and shows decrease in perfor-

30 4.2 Lacking Knowledge Of Traffic Rules

mance as a consequence. A larger reward scale leads to an almost deterministic
policy and results in less exploration. Its choice was found to be dependent to
the dimension of the action selection [HaarnojaEtAl18]. For a larger action space
a larger magnitude is necessary in general. Hence a value of αtemp = 1/5 was
chosen for the reward scale as the number of actions was nact = 2.

4.2 Lacking Knowledge Of Traffic Rules

Early on during the tuning process it was noticeable that the agent’s missing
knowledge about traffic rules and behavior hampers the learning effect. Because
no prior traffic rules were defined and no expert data is included during non
supervised methods, the agent showed early on uncharacteristic behavior for a
vehicle in a urban traffic scene. For example, in the beginning of the training the
vehicle would learn to enter the roundabout but turn left instead of right for some
cases, Fig. 4.1. After crashes with another vehicle or lane collisions, the vehicle
would learn to turn right eventually as all choices to turn left result in penalizing
rewards only. But without a supporting vehicle or the lane marking providing the
correct direction in an intersection, the agent would need more time to figure out
the right direction or, even worse, falsely understand driving counterclockwise to

Neural-Network-parameter Value
Optimizer Adam Optimizer
non-Linearity ReLU
Actor network learning rate αact 3 · 10−4

Critic network learning rate αcri 3 · 10−4

Value network learning rate αval 3 · 10−4

Number of hidden layers 2
Number of hidden units per layer 256

Table 4.1: Settings for the actor-, critic- and value-networks. If not explicitly
mentioned the values are shared for all networks.

Soft Actor Critic parameter Value
Discount factor γ 0.99
Replay buffer size 1 · 106

Number of samples per minibatch 256
gradient steps 1
Target smoothing coefficient ζ 5 · 10−3

Reward scale 5

Table 4.2: Parameter settings for the SAC algorithm

4 Evaluation Of The Framework 31

Figure 4.1: An example of the vehicle choosing to turn left in a round about and
the upcoming collision.

be the correct choice. There are different approaches to counter this issue. One
option is to penalize the agent with a negative reward for choosing to drive coun-
terclockwise when entering a roundabout. However this would require to equip
the roundabout with a corresponding defined reward. Moreover, once the agent
learned to enter the roundabout it does not have information on when to leave
the roundabout and could chose to stay in the roundabout for eternity. Addi-
tional information would be required for leaving the roundabout. Another option
would be to implement a similar idea as done in [NaveedQiaoDolan20] where a
high-level controller chose the agents behavior and a low-level system plans a tra-
jectory. Similar for the roundabout, a high-level decision making network would
detect the upcoming roundabout and chose to turn right with a low-level layer
taking over the control of the vehicle. However, for this work a rather simple
solution is chosen to test the framework and design reward values. Because the
interaction-dataset recorded the actual trajectory of each vehicle in real-time,
the simulation is able to provide this information as a reference trajectory. Us-
ing this reference, a reward is designed punishing the agent the more it diverges
from the actual trajectory. This counters the problem of potential counterclock-
wise directions and provides a reference on when to leave the roundabout again.
Furthermore, the inclusion of a punishment for the deviation to the reference
trajectory is adaptable and applicable to other other traffic scenarios, such as a
merging scene.

32 4.3 Reward Shaping

4.3 Reward Shaping

Rewarding the actions, an agent takes in a custom environment, can be difficult
to design. Complex dynamic environments as well as a continuous action space
impede the reward shaping, resulting in intense study of reward choices, their
tuning and chosen values. In terms of autonomous driving tasks, [PadenEtAl16]
gives a short overview of typical applied reward strategies.

• Returning only rewards at the end of an episode.

• Returning rewards only for specific situations.

• Returning on-going immediate rewards at each environment step.

If the agent only receives a reward at the end of an episode, which is then dis-
counted back to previously visited state-action pairs (s,a), longer learning times
could result for the agent but reduce the human influence on the policy shaping.
Immediate step rewards, evaluated at the current time step in the environment,
reduce training time, but hamper the agents capability of finding an overall bet-
ter solution to its task because of the intentionally designed reward. Last, an
intermediate solution can be considered in which rewards are returned in prede-
fined periods or for outstanding decisions chosen. It is up the the designer of the
RL-approach to find a valuable mixture.

4.3.1 Termination States

Rewarding states in continuous environments can be challenging as there is
no discrete state definition. In [FehérEtAl19] four different termination cases
are considered. As the vehicle’s goal is to follow the determined trajectory,
the environment is reset once it’s lateral distance exceeds 10 m, a lateral or
longitudinal slip is higher than 0.1, the yaw angle error surpasses 0.2 rad or
the maximum time limit is reached. If any of these cases occurs, the agent is
punished with a negative reward and the environment is reset to its initial state.
The termination cases for this simulation are listed in Tab. 4.3. Two termination
cases are considered that are attached to a negative reward. The first one is
the punishment the agent receives when the ego-vehicle passes over the road
reference. The second reward is returned when the ego-vehicle crashes into
another surrounding vehicle.
The three later termination cases were implemented as goal states. The first
goal state returns a positive reward once the time limit is reached. Each traffic
situation comes with a time constraint which in the previous prediction studies
marked the end of the current scene. This time limit reward is included as

4 Evaluation Of The Framework 33

a reward in order to motivate the agent to stay alive. The second reward is
introduced as an alternative to the previous time limit reward. It is returned
once the agent is close enough to the final position of the reference trajectory.
The purpose of this reward is to reward the agent for reaching the goal position
in the environment instead of staying alive. It comes together with the third
goal reward which penalizes the agent for taking the wrong exit or missing the
goal position when taking the correct exit.

4.3.2 Situational Rewards

The task to be learned by the RL-algorithm decides whether situational rewards
can be useful in the learning process. In an ongoing control task, without a
specific goal state as in [ChenYuanTomizuka19b], ongoing rewards might have
a better effect on the learning process than a spare reward only returned once
the agents action lead to a specific outcome. A good example for sparse rewards
is given in [FehérEtAl19] with the goal of trajectory planning. Once the agent
determines a trajectory a fixed number of checkpoints is equally distributed along
the trajectory. The agent receives a slip reward at each time step (an example for
an ongoing reward) and additionally two rewards according to the agents driven
distance and angle are calculated at the chosen checkpoints. This is an example
of a combination of ongoing/step rewards and situational rewards.
In this work two situational rewards have been considered listed in Tab. 4.4.
The first one is a total distance reward returned at the end of an episode. It
is equivalent to the path the ego-vehicle drove in the environment, determined
by calculating the sum of the distances between the single (x, y) positions of the
driven trajectory. While this reward could count as a termination reward, it is
separated from the termination rewards in Sect. 4.3.1 because the aforementioned
rewards are afflicted with an individual termination case.
The second situational reward serves as an alternative for the ”time limit reached”
termination reward in Tab. 4.3. Instead of resetting the environment once the

Step reward Reward
Lane Collision - constant
Vehicle Collision - constant
Time limit reached + constant
End reached + constant
Wrong exit/End missed - constant

Table 4.3: A list of all the termination states together with their returned reward.
All feature a constant reward that can be specified by the user.

34 4.3 Reward Shaping

time limit is reached, the agent receives a punishment for staying alive when the
time limit is exceeded.

4.3.3 Ongoing Rewards

During the testing of the RL-framework, the on-going rewards were found to in-
fluence the performance of the agent significantly. In each environment step the
agent benefits from receiving information about his last action. Simple tasks as
the grid-based problem in Fig. 2.1 do not require a complex step reward. An
example could be a simple punishing reward for staying alive, returned after each
step taken in order to encourage the agent to move on to reach the goal state.
But continuous environments together with a continuous action space require a
more complex reward function.
Depending on the problem setting and the action choice, the reward design can
vary in an autonomous driving task. In [ChenYuanTomizuka19b] the overall re-
ward consists of five sub-rewards. The ego vehicle is encouraged to move forward
by receiving a reward equivalent to its speed, but is reduced once a speed limit
is exceeded rv ← 10− rv if rv = vvel > 5 m/s. In order to improve smooth driving
steering is punished with rαsteer = 0.5·α2

steer. Vehicle collisions and lane exceeding
are punished with rcol = −10 and rexc = −1, respectively. Finally, a constant
reward rc = −0.1 is added to punish the ego-vehicle for standing still, similar to
the simple grid-based example.
For this work several on-going rewards were implemented and evaluated. A list
of all intermediate rewards are listed in Tab. 4.5. The left side shows a descrip-
tion of each action rewarded while the left side lists the formula to calculate
the rewarded value. At each environment step the agent receives at least a con-
stant negative reward for staying alive. This is equivalent to the reward rc in
[ChenYuanTomizuka19b] and the simple grid-based example. The second and
third entry in Tab. 4.5 list negative rewards for a change in velocity and orien-
tation. In some cases slowing down or changing the orientation is necessary, but
these rewards main purpose is to counter non smooth trajectory development that
emerges from drastic velocity and orientation jumps. A deviation to a reference
velocity is introduced to keep the vehicle at a constant velocity. In a breaking
process or accelerating situation the agent is forced to increase its velocity or
decrease it, but adding this reward should stop the agent from accelerating to

Situation Reward
Total traveled distance +∑T

t=1

√
(xt − xt−1)2 + (yt − yt−1)2

Time limit exceeded −(t− Tmax)↔ t > Tmax

Table 4.4: Rewards returned only in chosen situations.

4 Evaluation Of The Framework 35

much and exceeding the constant target speed vref . To motivate the agent to
move forward, each environment step a traveled distance reward is considered. It
is calculated by measuring the distance between the position in the previous and
the current environment step.
The last two rewards describe rewards determined when considering a reference
trajectory for the ego-vehicle and comparing its current positioning in the envi-
ronment to the reference. The reference trajectory contains the optimal xt - yt
coordinates at each environment step t. Two different approaches are examined
to include a reference reward. In earlier attempts the distance between the cur-
rent position (xt, yt) of the ego-vehicle and the desired position (xreft , yreft) in the
reference at environment step t was considered. The idea in this approach is to
teach the agent to end up in the desired position at the according environment
step t. As an alternative a slightly different approach is introduced to include the
reference trajectory information. This reward is equal to the distance between
the agents current position (xt, yt) and the nearest point (xrefi , yrefi) in the ref-
erence trajectory. With this design the agent is supposed to stick close to the
reference trajectory in general, excluding the time constraint.

4.3.4 Reward Function Evaluation

Shaping the reward function for a RL-application can be a time consuming and
challenging part. When exploring the action space RL-algorithms rely heavily
on the reward function. For example, a sparse reward function can hamper the
training process as RL-algorithms struggle to determine a successful policy. Be-
cause of this well thought out, hand-crafted reward functions are necessary to
achieve satisfying training results, especially in the case of applications designed
for real-world scenarios [RengarajanEtAl22].
While some of the introduced rewards look to be promising in theory their in-
clusion would hamper the training process. Looking at the goal termination
rewards the ”Time-limit-reached” reward showed unfavorable results when used

Action Reward calculation
Staying alive − constant
Change in orientation −|ξt − ξt+1|
Change in velocity −|vt − vt−1|
Deviation to reference velocity −(vt − vref)2

Traveled step distance +
√

(xt − xt−1)2 + (yt − yt−1)2

Deviation to reference trajectory −
√

(xt − xreft)2 + (yt − yreft)2

Deviation to closest reference point −mini(xt − xrefi)2 + (yt − yrefi)2

Table 4.5: Rewards returned at each environment step.

36 4.3 Reward Shaping

as the only goal reward. Instead of following the reference trajectory and trying
to reach the goal in time, the agent would chose to slow down in the roundabout
and find a collision-free spot to receive the positive reward as shown in Fig. 4.2.

Figure 4.2: The vehicle waits at a collision-save location to receive the goal ter-
mination reward for surviving. Note that vehicle 11 was right in front
of vehicle 13 at the beginning.

The alternative ”End-reached” termination reward improved the results a lot and
the vehicle would be able to reach its final position. Additionally the ”Wrong-
exit/End-missed” termination reward was added because in some cases the vehicle
would miss the final position and despawn. Similar results could occur if the
vehicle takes the wrong exit.
Two situational rewards were introduced. Both of them did not show significant
influences when they were applied. Their removal did not influence the results in a
noticeable way as the vehicle would show similar behaviour when the two rewards
were not considered. The ”Total-traveled-distance” reward is only reasonable to
add if a reference trajectory reward is omitted to motivate the agent to drive as far
as possible. But it also comes with the risk of driving as long as possible instead
of reaching the goal state if scaled wrong. The ”Time-limit-exceeded” reward is
an alternative to the ”Time-limit-reached” termination reward and would counter
staying alive as long as possible. But similar to the distance rewarding it could
lead to a behavior where the agent would not explore all possibilities when applied
wrongly if for example the agent would be punished before it could explore the
goal state in a difficult traffic situation with a larger exploration phase. Their

4 Evaluation Of The Framework 37

influence therefore needs more examination, but both look promising for certain
applications.
The ongoing rewards were the most influential rewards as they would shape the
agents behavior each environment step. A ”Staying-alive” reward did show least
influence. Penalizing the agent for changing its velocity or orientation would lead
to more smooth trajectories as seen in Fig. 4.5. The agent’s trajectory becomes
smoother in later time steps while it is still very curvy in the beginning. A
direct reference velocity did not show favorable results and instead a range was
defined which the velocity should not exceed. It is referred to as the reference
velocity vref = [vmin, vmax]. Choosing a too large constant value for the reference
velocity vref resulted in behavior in which the agent would drive to fast and crash
into the vehicle in front, as shown in Fig. 3.2. Instead of slowing down earlier
the vehicle would get very close the vehicle 11 and try to pass it once there is
enough space. Reducing the constant value vref would help the ego-vehicle to not
crash into the vehicle in front but drive too slow potentially slowing down traffic
and letting other vehicles crash into it. With a defined velocity range and the
penalization of large changes in the action space the agent is free to slow down
and accelerate both to chosen limits, resulting in a more smooth velocity change
over the trajectory. The ego-vehicle would learn to break early instead of abruptly
slowing down while also maintaining to never stop and accelerate once it has the
possibility to do so. When using the velocity range as a reward the results showed
how the agent would almost keep a constant distance to the vehicle in front while
previously it attempted to close the gap to keep the desired velocity. Similar
to the ”Total-traveled-distance” reward, the ”Traveled-step-distance” reward did
not show any big influences and again more time is necessary to investigate if it
results in any additional benefits.
The largest influence on successful results together with the termination rewards
was the inclusion of a reward connected to the reference trajectory. While in
theory the design of the first reference-trajectory-reward makes sense it, comes
with a crucial side effect. If the agent does not reach the desired position at
the environment step t, it is unlikely to be at the target position at the next
environment step t + 1. This means a single mistake at environment step t will
influence all the upcoming environment steps following after and the negative
reward will begin to increase. The vehicle is punished for the mistake it made
at the environment step t every following step over and over again. This design
will end up in a cumulative reward, which can hamper the training process as
the agent will have difficulties to understand which decision was disadvantageous.
The second design does not produce a cumulative reward as the time constraint
is eliminated and therefore it is a better choice for the training process. However,
during the training process it was noticeable that the agent would learn to slow
down and stick to the minimum reference velocity vmin to receive the positive
reward for consecutive environment steps and stick close to the closest reference
point as long as possible. To counter this behavior, a counter mechanism was

38 4.3 Reward Shaping

implemented which would return a positive reward only once for each reference
point. Once the agent was close enough to a reference point, it would have to
continue driving to earn the next positive reward of a reference point as visualized
in Fig. 4.3.

Figure 4.3: Visualization of the reference reward. If the agent is within a defined
radius (orange circle) around a reference point (red square), it would
receive a positive reward.

During the training process different implementations of the rewards were tested.
The ongoing and situational rewards were first applied as dynamic rewards only
with the reward value being equivalent to the calculated values. For example the
reward for a change in velocity would be the result of −|ξt − ξt+1|. The agent
would receive a larger punishment the more it would accelerate. However, this
would lead to situations in which the agent explores dead ends of a policy as the
rewards will always be slightly different causing the agent to get stuck searching
for minor reward increases. In Fig. 4.4 a situation is shown where the vehicle
would learn to crash into the line instead of continue driving as the vehicle 11
would be in front of it when approaching the roundabout entry, Fig. 3.2. Instead
of following the vehicle with a slower velocity, the agent would choose to crash
and maximize its reward beforehand as there were small changes in the rewards
each environment step. Therefore some rewards were chosen to be constant with
potential defined ranges, which showed improvements in the training results.

4 Evaluation Of The Framework 39

Figure 4.4: When using dynamic rewards the policy might converge to a local
point where the vehicle explores less because of dynamic rewards.

4.4 Mastering Navigation Through A
Roundabout

In order to find suitable values for all chosen rewards, a part of this work was to
train an agent to learn a chosen traffic scenario and teach the vehicle to success-
fully master the given scenery. For this purpose a roundabout scenery originally
located in the US was chosen Fig. 3.2. Tab. 4.6 lists all the previously mentioned
and explained rewards and termination states, used during the successful training
session. It should be noted that the case of exceeding the time limit did not occur
in this case.
Fig. 4.5 shows the trajectories the vehicle learned. It is clearly visible how the
agent is able replicate the reference trajectory after enough training time. Episode
1000 shows the still non-smooth unrealistic trajectory which smooths out over the
training process. Here the agent is still exploring the beginning of the scenario
when there is only a narrow lane to drive on and a vehicle in front and another
vehicle in the back Fig. 4.8(a). Episode 10000 shows how the agent still did
not fully explore the action space in the beginning as it would crash into the
lane. This is a common difficulty with continuous action spaces which can be

40 4.4 Mastering Navigation Through A Roundabout

Reward Calculation Reward value
Lane Collision - −20
Vehicle Collision - −20
End reached

√
(xt − xrefi=N)2 + (yt − yrefi=N)2 < 2 m +100

Wrong exit/End missed vehicle despawned −5
Time limit exceeded t > Tmax −4
Change in orientation |ξt − ξt+1| > 0.2 rad −0.25
Change in velocity |vt − vt−1| > 0.5 m/s −0.35
Exceeding max. velocity vt > vmax = 10 m/s −(vt − 10)2

Fall below min. velocity vt < vmin = 4 m/s −(vt − 4)2

Velocity in def. range vmax > vt > vmin +1
Agent close to reference ∆ref < 0.1 m2 +5
Agent lost reference ∆ref > 0.5 m2 −5

Table 4.6: Rewards which resulted in successful mastering the roundabout hurdle.
Here ∆ref = mini(xt − xrefi)2 + (yt − yrefi)2 is the squared distance to
closest reference point and only rewarded if the agent hasn’t been at
that reference point before.

countered with well implemented reward functions or limitations in actions. It
should be noted that the reward function was adjusted between episodes 20000
and 30000 when the vehicle got stuck exploring small changes in the returned
rewards, as described in Sect. 4.3.4. For this adjustment the change in velocity
and orientation rewards were modified to return constant negative rewards in-
stead of punishing the agent with the calculated value directly. Even though it
would be favorable to restart the training process from the beginning, this small
modification would have not influenced the agents ability to master the beginning
of the roundabout as at the time of mastering to enter the roundabout success-
fully other rewards were the dominating factors. After around 33000 episodes the
agent would repeatedly drive through the roundabout successfully.

The upper half of Fig. 4.6 shows the averaged score in this training session over
the total number of episodes, divided into smaller sets. The score increases over
the number of episodes and in the last episode sets the agent is reaching the end
more often than colliding or missing the final state. Additionally, the averaged
number of environment steps taken per step and the averaged driven distance are
displayed on the lower half of Fig. 4.6. Note how the agent manages to stay alive
longer and drive farther at the same time with more experience.

In Fig. 4.7 the distribution of occurring termination cases for each episode set is
visualized. Lane collisions were the majority of termination reasons. But in the
beginning of the training process small red percentages are noticeable. The first
larger red bar is attributable to the vehicle number 11 driving in front of the ego-

4 Evaluation Of The Framework 41

Figure 4.5: Selected trajectories from the training cycle with the settings in
Tab. 4.6. The according episode can be seen in the legend.

vehicle before entering the roundabout and the later appearing vehicle number
14 following the agent, as seen in Fig. 4.8(a). The second small red bar shows the
collision with the vehicle number 12 which is already present in the roundabout
as seen in Fig. 4.1. After enough training time the agent knows how to react
in that situation, Fig. 4.8(b). The later appearing red parts in the distribution
show the collisions with vehicle number 11 and 10 when the vehicle wants to leave
the roundabout again, as depicted in Fig. 4.8(c). In the later episodes the agent
manages to reach the final state repeatedly, shown in Fig. 4.8(d). Sometimes it
would miss the end state, which happened when the vehicle was not less than
2 m away from the final position and left the roundabout causing to despawn, as
described in Tab. 4.6. With more training episodes the purple bar would decrease
further. It should be noted that the larger blue part between approximately 15000
and 27000 episodes is due to the earlier described phenomenon in which the agent
got stuck due to minor reward changes Sect. 4.3.4. After the change the vehicle
managed to master the scenario.

Fig. 4.9 shows the average deviation in each episode. The few points with a larger
deviation happened due to a minor bug in the code, where the vehicle would leave
the roundabout, but the environment was not reset and the simulation continued
to run until the computer crashed. Only the later peak is attributable to the

42 4.4 Mastering Navigation Through A Roundabout

−80

−60

−40

−20

0

20

40

60

80

En
vi

ro
nm

en
t

st
ep

s/
D

ist
an

ce
[m

]

0:
168

2758:
2926

5516:
5684

8274:
8442

11032:
11200

13790:
13958

16548:
16716

19306:
19474

22064:
22232

24822:
24990

27580:
27748

30338:
30506

32928:
33096

−400

−200

0

200

400

Episode sets

Sc
or

e

Figure 4.6: Averaged score and averaged episode steps as well as averaged dis-
tance over set of episodes from the training with the settings in
Tab. 4.6. The upper half shows the score with the bars colored in
the most frequent termination case. The lower half shows the av-
eraged number of episodes together with the averaged distance the
agent drove for each set of episodes.

4 Evaluation Of The Framework 43

0:
168

2758:
2926

5516:
5684

8274:
8442

11032:
11200

13790:
13958

16548:
16716

19306:
19474

22064:
22232

24822:
24990

27580:
27748

30338:
30506

32928:
33096

0

20

40

60

80

100

Episode sets

Te
rm

in
at

io
n

ca
se

di
st

rib
ut

io
n

Lane Collisions
Car Collisions
End reached
Wrong Exit/End missed

Figure 4.7: Case distribution over episode sets: Lane collision (blue), Car colli-
sion (red), reached end position (green), agent missed position barely
(purple). Taking an actual wrong exit did not occur.

agent missing the exit and instead keep on driving in the roundabout, following
vehicle 11 and sometimes crashing into it. Overall the deviation jumps as the
vehicle learns to correct its mistake, but then takes sub-optimal decisions at later
environment steps. The almost constant deviation in the middle is the agent
getting stuck in the earlier described dead end, Sect. 4.3.4. Only at the end of
the training session the overall deviation decreases as the agent finds the optimal
policy.

4.4.1 Training Duration

Because the simulation environment was originally designed to study multi-agent
prediction behavior, each individual vehicle runs its own sub-thread over the
runtime period. Each sub-thread takes care of updating the vehicles individual
state, which does not only require a large amount computation power, but also
influences the training time when applying a RL-application. Fig. 4.10 shows the

44 4.4 Mastering Navigation Through A Roundabout

(a) (b)

(c) (d)

Figure 4.8: Images of the agent successfully mastering the roundabout at envi-
ronment steps (a) 2100 ms, (b) 3700 ms, (c) 6400 ms and (d) 8000 ms

4 Evaluation Of The Framework 45

0 5000 10000 15000 20000 25000 30000
0

2

4

6

8

Episode

D
ev

ia
tio

n
to

re
fe

re
nc

e
[m

]

Figure 4.9: Average Deviation in each episode. The agent manages to decrease
the deviation repeatedly but also increase when exploring unknown
new states.

training duration for chosen number of episodes. As shown, running the simu-
lation for only 1000 episodes takes approximately an hour. This is considerably
high compared to other training environments. For around 30000 episodes the
simulation trains more than 2 days. The increase in time results due to the agents
successful learning in the environment as it manages to stay alive for a longer
period of time.

46 4.4 Mastering Navigation Through A Roundabout

1000 5000 10000 15000 20000 25000 30000 33096
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

·105

0:49:52

4:53:08

10:10:01

15:03:56

1 day, 1:34:33

1 day, 14:49:06

2 days, 4:28:59

2 days, 19:53:13

Number of training episodes

T
im

e
[s]

Figure 4.10: Duration of training time for certain number of episodes.

Chapter 5

Conclusion and Outlook

In this work a RL-interface was established, making use of an already preexisting
traffic simulation designed for studying behavior prediction in autonomous
driving in highly dense traffic environments. After a detailed background about
the fundamentals of RL different RL-algorithms were introduced and compared.
SAC was selected and implemented. A roundabout scenario was chosen and an
agent was trained to master the traffic scenario. For this purpose, the simulation
environment was adjusted for a RL training loop and a custom reward function
was designed. Different reward strategies were established and evaluated.
The framework was successfully utilized to train an agent in a chosen urban
environment. However, the long training times, visualized in Fig. 4.10, raise
the question if the framework should be utilized for further application of
RL-algorithms to the current state of the simulation.
As explained in Sect. 4.4.1, the simulation starts a single sub-thread for each
vehicle which accounts for the vehicle’s individual behavior, such as planning
a trajectory as well as predicting other vehicles behavior. But for single
agent RL-applications only a maximum of two threads is necessary. The first
sub-thread runs the simulation environment while the second one takes care of
the RL-tasks, such as remembering observations or choosing the action for next
environment step. In terms of multi-agent RL additional sub-threads can be
started, according to the number of agents acting in the environment. Every
other vehicle would continue to follow its recorded trajectory in the dataset only
without running a sub-thread. This would reduce the training times and allow
faster development.
Further time optimization can be achieved by adjusting the current logging
process. For the behavior prediction setting the simulation features an already
inbuilt logging system. States of each vehicle at every environment step as
well as planned and predicted trajectories are saved in text files. An external
visualization module can be used to display the simulation environment Fig. 3.2.

48

An additional logging module was implemented to save the results of the
RL-algorithm, such as the score of each episode, the duration and termination
cause. This data is stored in separate text files because the visualization tool
follows an established structure when reading the simulation data files. To
improve the evaluation process of the results the logging module could be
adjusted to feature all data at the same location. Additionally, a faster and less
power consuming method can be considered to save the produced data. This
could speed up the training duration further.
In terms of visualizing the environment an additional real-time visualization tool
is present in the current state of the simulation. Because the inclusion of visual
observations of the scenery as an input for the agent is desirable, the present real
time visualization tool could be adjusted to serve as an image-generation module
which produces pictures adjusted for feature extraction and pattern recognition
by neural networks, as done by [ChenYuanTomizuka19b] for example. These
images could then be read by the python side and used as input informa-
tion/observation. For this purpose, the already existing visualization tools
(real-time and replay) could be considered. Furthermore, if the interaction
dataset possesses information for spatial visualization image generation, a
three-dimensional environment can be considered, which would increase the
possibilities for studying RL in autonomous driving.
Finally, training a RL-agent requires generalization across different environmen-
tal settings. In terms of autonomous driving tasks the ego-vehicle should train in
multiple traffic situations. This includes different urban settings, such as several
unique roundabouts with varying sizes and number of exits , intersections of two
or more roads, single or multiple lane merging etc. together with variable number
of surround vehicles. Needles to say, the user of the present RL-framework can
rerun the training loop over and over again, and additionally load a different
configuration file, but it would be convenient to start an automated process. An
initialization module has been implemented with respect to this work, but it
still needs a manual definition of the scenery for the python client. Therefore
this module could be extended to receive the information by the C++ side.
Even further, currently the simulation features a configuration file assistance
tool which generates an initialization file depending on the desired settings
for the prediction tasks (traffic scenario, number of vehicles, time constraints
etc.). A similar generation tool could be implemented taking care of generating
randomized training situations (changing traffic scenario, determining the
number of vehicles, time constraints etc.) and additionally control the training
process by starting the server and client itself.

Overall, the already preexisting features for behavior prediction and trajectory
planning lead to the simulation being comprehensive, including a lot of different
sub-modules and classes. Henceforth, working with the existing code was very

5 Conclusion and Outlook 49

challenging and time consuming. Especially the multi-threading design consisting
of a main loop, sub-threads for vehicles and update processes lead to overhauls of
the implementations for just small additions and changes. Even though for now
the RL-framework is present, larger updates and extensive changes might require
large modifications again. To that end, maintenance will be time-consuming and
extending the simulation will increase the already present complexity, especially
since the previous prediction structures do not require the RL-additions. In terms
of that adjusting the simulation environment further might be less favorable and
instead creating and developing an additional separate simulation environment
from scratch might be preferential. This would come of the advantage that the
prediction and RL-tasks would be separated and the current simulation would be
less voluminous. Already implemented parts and sub-modules of the current sim-
ulation could be copied, reused and adjusted while an RL-optimized simulation
environment could be build. Alternatively, countless already existing commer-
cial RL-environments exist which are optimized and maintained by professionals.
Making use of an external library, which would optimally allow the integration of
the already existing interaction dataset, would save time consuming mainte-
nance and the users of the simulation could focus their work on the development
of their algorithms.

Bibliography

[AbbeelLevine22] Abbeel, P.; Levine, S.: Lecture notes of cs285 deep reinforce-
ment learning, 2022.

[Aradi20] Aradi, S.: Survey of deep reinforcement learning for motion planning
of autonomous vehicles. CoRR, Vol. abs/2001.11231, 2020.

[BansalKrizhevskyOgale18] Bansal, M.; Krizhevsky, A.; Ogale, A.S.: Chauffeur-
net: Learning to drive by imitating the best and synthesizing the worst.
CoRR, Vol. abs/1812.03079, 2018.

[Bellman57] Bellman, R.: A markovian decision process. Indiana Univ. Math.
J., Vol. 6, pp. 679–684, 1957.

[BrockmanEtAl16] Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; Zaremba, W.: Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[ChenYuanTomizuka19a] Chen, J.; Yuan, B.; Tomizuka, M.: Deep imitation
learning for autonomous driving in generic urban scenarios with enhanced
safety, 2019.

[ChenYuanTomizuka19b] Chen, J.; Yuan, B.; Tomizuka, M.: Model-free deep
reinforcement learning for urban autonomous driving, 2019.

[CoutoAntonelo21] Couto, G.C.K.; Antonelo, E.A.: Generative adversarial imi-
tation learning for end-to-end autonomous driving on urban environments.
CoRR, Vol. abs/2110.08586, 2021.

[DuanEtAl16] Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P.:
Benchmarking deep reinforcement learning for continuous control. CoRR,
Vol. abs/1604.06778, 2016.

[DuanEtAl21] Duan, J.; Ren, Y.; Zhang, F.; Guan, Y.; Yu, D.; Li, S.E.;
Cheng, B.; Zhao, L.: Encoding distributional soft actor-critic for au-
tonomous driving in multi-lane scenarios. CoRR, Vol. abs/2109.05540,
2021.

52 BIBLIOGRAPHY

[FehérEtAl19] Fehér, Á.; Aradi, S.; Hegedü s, F.; Bécsi, T.; Gáspár, P.: Hybrid
ddpg approach for vehicle motion planning. pp. 422–429, 2019.

[Forbes02] Forbes, J.R.N.: Reinforcement Learning for Autonomous Vehicles.
dissertation, University of California at Berkeley, 2002.

[FujimotoHoofMeger18] Fujimoto, S.; van Hoof, H.; Meger, D.: Address-
ing function approximation error in actor-critic methods. CoRR,
Vol. abs/1802.09477, 2018.

[HaarnojaEtAl18] Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S.: Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. CoRR, Vol. abs/1801.01290, 2018.

[JesusEtAl21] Costa de Jesus, J.; Kich, V.; Kolling, A.; Grando, R.; Cuadros, M.;
Gamarra, D.F.: Soft actor-critic for navigation of mobile robots. Journal
of Intelligent & Robotic Systems, Vol. 102, 2021.

[JiaEtAl21] Jia, X.; Sun, L.; Zhao, H.; Tomizuka, M.; Zhan, W.: Multi-agent
trajectory prediction by combining egocentric and allocentric views. In
5th Annual Conference on Robot Learning, 2021.

[KiranEtAl20] Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.;
Yogamani, S.K.; Pérez, P.: Deep reinforcement learning for autonomous
driving: A survey. CoRR, Vol. abs/2002.00444, 2020.

[LillicrapEtAl15] Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; Wierstra, D.: Continuous control with deep rein-
forcement learning. CoRR, 2015.

[MnihEtAl13] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.;
Wierstra, D.; Riedmiller, M.A.: Playing atari with deep reinforcement
learning. CoRR, Vol. abs/1312.5602, 2013.

[MnihEtAl15] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.;
Bellemare, M.G.; Graves, A.; Riedmiller, M.A.; Fidjeland, A.; Ostro-
vski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.;
Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D.: Human-level control
through deep reinforcement learning. Nature, Vol. 518, pp. 529–533, 2015.

[NageshraoTsengFilev19] Nageshrao, S.; Tseng, E.; Filev, D.: Autonomous high-
way driving using deep reinforcement learning, 2019.

[NaveedQiaoDolan20] Naveed, K.B.; Qiao, Z.; Dolan, J.M.: Trajectory planning
for autonomous vehicles using hierarchical reinforcement learning. CoRR,
Vol. abs/2011.04752, 2020.

Bibliography 53

[PadenEtAl16] Paden, B.; Cap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E.: A
survey of motion planning and control techniques for self-driving urban
vehicles, 2016.

[PaszkeEtAl19] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmai-
son, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chil-
amkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S.: Pytorch: An
imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Asso-
ciates, Inc., 2019.

[Pomerleau88] Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural
network. In D. Touretzky (Ed.) Advances in Neural Information Processing
Systems, Vol. 1, Morgan-Kaufmann, 1988.

[RengarajanEtAl22] Rengarajan, D.; Vaidya, G.; Sarvesh, A.; Kalathil, D.;
Shakkottai, S.: Reinforcement learning with sparse rewards using guid-
ance from offline demonstration, 2022.

[SavariChoe21] Savari, M.; Choe, Y.: Online virtual training in soft actor-critic
for autonomous driving. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, 2021.

[SilverEtAl14] Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Ried-
miller, M.: Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, p. I387I395, JMLR.org, 2014.

[XuEtAl16] Xu, H.; Gao, Y.; Yu, F.; Darrell, T.: End-to-end learning of driving
models from large-scale video datasets. CoRR, Vol. abs/1612.01079, 2016.

[ZhanEtAl19] Zhan, W.; Sun, L.; Wang, D.; Shi, H.; Clausse, A.; Naumann, M.;
Kümmerle, J.; Königshof, H.; Stiller, C.; de La Fortelle, A.; Tomizuka, M.:
INTERACTION Dataset: An INTERnational, Adversarial and Cooper-
ative moTION Dataset in Interactive Driving Scenarios with Semantic
Maps. arXiv:1910.03088 [cs, eess], 2019.

[ZhanEtAl21] Zhan, W.; Sun, L.; Ma, H.; Li, C.; Jia, X.; Wang, D.; Shi, H.;
Clausse, A.; Naumann, M.; Kümmerle, J.; Königshof, H.; Stiller, C.;
de La Fortelle, A.; Tomizuka, M.: Interpret: Interaction-dataset-based
prediction challenge iccv2021 competition, 2021.

Appendix

A.1 Contents Archive

There is a folder PRO 064 Maroofi/ in the archive. The main folder contains
the entries

• PRO 064 Maroofi.pdf : the pdf-file of the thesis PRO-064.

• Data/: a folder with all the relevant data, programs, scripts and simulation
environments.

• Latex/: a folder with the *.tex documents of the thesis PRO-064 written
in Latex and all figures (also in *.svg data format if available).

• Presentation/: a folder with the relevant data for the presentation in-
cluding the presentation itself, figures and videos.

Erklärung

Ich, Sean Maroofi (Student des Maschinenbaus an der Technischen
Universität Hamburg, Matrikelnummer 51334), versichere, dass
ich die vorliegende Projektarbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel verwendet habe. Die Arbeit
wurde in dieser oder ähnlicher Form noch keiner Prüfungskommis-
sion vorgelegt.

Unterschrift Datum

	Introduction
	State of the Art
	Goal of this Work

	Reinforcement Learning
	Fundamentals
	Markov Decision Process
	Goal in Reinforcement Learning
	Value Functions

	Selection of an Algorithm
	On-policy vs Off-policy
	Deep Q-Learning
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic Policy Gradient
	Soft Actor Critic
	Choosing an Algorithm

	Components of Soft Actor Critic
	Maximum Entropy Augmentation
	Soft Policy Iteration
	A Soft Variant of Actor Critic
	Updating the Target Network
	Reparameterization
	Likelihood of Bounded Actions

	Application to the Simulation
	The General Structure
	Server-Client Communication
	External Prediction and Planning

	Adding a Reinforcement Learning Framework
	Observation and Action Choice

	Evaluation Of The Framework
	Parameter Settings
	Lacking Knowledge Of Traffic Rules
	Reward Shaping
	Termination States
	Situational Rewards
	Ongoing Rewards
	Reward Function Evaluation

	Mastering Navigation Through A Roundabout
	Training Duration

	Conclusion and Outlook
	Bibliography
	Appendix
	Contents Archive

