
Master’s Thesis
MSC-059

Dynamic Model Inversion
of a

Soft Robot
Dynamische Modellinversion

eines Softroboters

by
Sean Maroofi

Supervisors: Prof. Dr.-Ing. R. Seifried
Prof. Dr.-Ing. C. Cyron
Dr.-Ing S. Drücker
M. Grube, M.Sc.

Hamburg University of Technology (TUHH)
Institute of Mechanics and Ocean Engineering

Prof. Dr.-Ing. R. Seifried

Hamburg, September 2023

Contents

1 Introduction 1

2 Fundamentals 5

2.1 Operation Spaces . 5

2.2 Forward Direction . 7

2.2.1 Full Finite Element Model 8

2.2.2 Cosserat Rod . 8

2.2.3 Piecewise Constant Curvature 9

2.2.4 Data-Driven Methods . 10

2.3 Inverse Direction . 11

2.3.1 Inverse Dynamics for Softrobots 11

2.3.2 Inverse Dynamics for Underactuated Systems 12

3 Forward Model 13

3.1 Modeling Choice for Kinematics 13

3.2 Piecewise Constant Curvature Kinematics 14

3.2.1 Parameterization . 14

3.2.2 Global Frame . 19

3.3 Forward Dynamics . 20

3.3.1 External Loads . 20

3.3.2 Actuation Loads . 21

3.3.3 Internal Loads . 24

ii Contents

3.3.4 Equations of Motion . 26

3.4 Actuation . 27

3.5 Output . 29

4 Inverse Model 33

4.1 Inverse Model with Servo-Constraints 33

4.1.1 Basic Concept . 33

4.1.2 Stability Analysis of Internal Dynamics 35

4.1.3 Relative Degree . 37

4.2 Completing the System . 39

5 Implementation & Setup 41

5.1 Software Details . 41

5.2 Solving the System . 41

5.3 Trajectory Generation . 42

5.3.1 Path Generation . 42

5.3.2 Adding Time Dependency 48

5.3.3 Constant Velocity Profile 49

5.3.4 Shifting Trajectories . 53

5.4 The Real Soft Robot . 54

5.5 Actuation System . 54

5.6 Tracking Setup . 56

6 Experimental Results 57

6.1 Parameter Identification . 57

6.1.1 Impact of the Coefficients ∆lF,q and ∆lK,q 58

6.1.2 Tuning of the Parameters cq and bq 62

6.2 Trajectory Following . 72

6.2.1 Triangular Trajectory . 86

Contents iii

7 Summary and Outlook 95

Bibliography 97

Appendix 103

A.1 Contents Archive . 103

Chapter 1

Introduction

Robotic systems have changed our everyday life over the last decade, not only
performing dangerous tasks, as in the manufacturing of cars, but also incidental
work in our everyday life, such as law mowing or vacuuming. Intensive research
led to an increase in variety of robotic design, accurately constructed for their
specific application. Most commonly, robots are manufactured out of rigid syn-
thetic materials or metal. However, in some applications a rigid body foundation
may be disadvantageous. As an example, Fig. 1.1 shows a simple scenario, where
a robot arm should grab an apple in a very narrow environment. A rigid robotic
arm would have to be constructed precisely for this task and may not be us-
able for another narrow surrounding. Instead, a flexible robot capable of forming
an arbitrary shape would be ideal for such a task. These robots belong to the
subcategory of soft robotics and are part of the continuum robots research field.
Deformable robots are applicable in a variety of areas, such as medical procedures
or underwater tasks . Their elastic nature allows easier interaction with patients,
ensuring safety to their surroundings and the receiving end, as well as execution
of careful tasks, such as grasping of fragile and sensitive objects. Examples for
soft robots are shown in Fig. 1.2.

(a) Rigid robot. (b) Soft robot.

Figure 1.1: Rigid robots vs. soft robots in a simple example.

2

Soft robots come with a lot of benefits, but make the application of known general
algorithms and mathematical concepts, which have been applied to rigid robots,
more difficult at the same time. Conventional robotic arms consist of a series
of rigid links connected by joints. Each joint can be controlled directly to reach
desired locations in space. Contrarily, many soft robots are characterized by a
continuous and jointless flexible backbone, which gives them the ability to take
a variety of shapes [AmouriMahfoudiZaatri19]. Their elastic nature allows them
to deform at any point along their bodies. The freedom in deformation causes an
increase in the number of degrees of freedom, resulting in high kinematic redun-
dancy. Consequently, non-linear structures and complex geometries hinder the
derivation of analytical models to describe and control their motion [DingEtAl22].

Most of the existing control algorithms for soft robots rely on purely kinematic
modeling [WebsterJones10], [ThuruthelEtAl18]. These static models are capable
of controlling soft robots successfully. But to perform dynamic motion in
space, pure kinematic modeling is not sufficient and mathematical models
need to consider the dynamic behavior of soft robots. The development of
real-time dynamic control strategies is difficult due to several reasons. As in
the case of pure kinematic modeling, dynamic models have to take the infinite
dimensionality of the robot’s state space into account [Della SantinaEtAl20].
This leads to strong non-linear relations already for pure kinematic modeling.
Consideration of dynamic relationships results in even more complex models.
For example, distribution of differential masses, which affect the movement and
rotational acceleration of the body, and differentiation of time dependent vari-
ables, which are already deeply nested and connected in the kinematic equations,

Figure 1.2: Examples for soft robots: Underwater soft gripper by [Wood16]
(left), previous prototype from [Bekman22] (middle), NASA robot
by [SullivanFlitzpatrick19] (right) and origami robotic arm by
[WuEtAl21] (bottom).

1 Introduction 3

complicate the mathematical derivation of a dynamic model [JensenEtAl22].
Large and complex differential equations emerge, which can be difficult and
computationally expensive to solve, and for real-time implementations these
models need to be designed in numerically stable form [WebsterJones10].

When it comes to deriving a forward model (determination of the robot’s state
given a system input) many works exist for representation of the dynamics
[JensenEtAl22], [AmouriMahfoudiZaatri19], [ThuruthelRendaIida20]. But in
order to perform output tracking tasks, the input to reach a desired output
needs be determined. This requires inversion of the forward model, which
is difficult due to its high non-linearity and complexity. Furthermore, soft
robots are controlled with a limited amount of actuators and are consequently
highly underactuated (infinite degrees of freedom). Therefore, not all degrees of
freedom can be controlled independently, which further hampers the inversion
[Drücker22]. But different approaches in literature exist to treat the inverse
problem. One method is the framework of servo-constraints, which is suitable
for complex underactuated multibody systems, and can be considered to solve
the inverse problem [Kirgetov67].

The Institute of Mechanics and Ocean Engineering (MuM) owns a soft robot,
which was manufactured and studied in previous works. After studies on kine-
matics and control of soft robots in [Wiek21] and [Wiek22], trajectory following
was studied in [Bekman22]. As an extension to the previous work, this thesis is
dedicated to the inverse dynamics problem for another self-constructed soft robot
of bigger size, see Fig. 1.3. With the goal of trajectory following, a representation
for the inverse model is derived using the servo-constraints approach. Following
a short introduction, an overview of common modeling techniques for soft robots
is presented in Chap. 2. A forward model is derived in Chap. 3. Afterwards,
the inverse direction is addressed in Chap. 4 by applying the servo-constraints
approach. Chap. 5 gives an insight into the implementation and provides details
about the real-system. Chap. 6 is dedicated to evaluation of experimental results.
Finally, Chap. 7 summarizes this work and presents an outlook on improvements
and future work.

4

Figure 1.3: The Soft robot studied in this work.

Chapter 2

Fundamentals

This chapter provides an overview on the fundamentals of robotic modeling.
First, the concept of operation spaces is introduced in Sect. 2.1, which gives
an overview on the structure of traditional rigid robots. Afterwards, popular
approaches in literature for modeling the forward mapping of soft robots are
presented in Sect. 2.2. Finally, Sect. 2.3 summarizes present work on solving the
inverse direction for soft robots and introduces other common approaches for
derivation of inverse models for underactuated multibody systems.

2.1 Operation Spaces

Commonly, to model conventional rigid robots, the overall system is separated
into different operation spaces [SicilianoKhatib08]. This becomes advantageous
for defining relationships and functions for control of each sub-part. These can
be considered separately and individual mappings in between these operation
spaces can be established. Every operation space can be described by its own
parameters in a chosen state, while the mapping functions provide the physical
and mathematical relationships between these states.

Commonly defined spaces are the configuration space, the task space and the
workspace [Mueller19]. The configuration space gives a specification of the
position of all points of a robot in space. In terms of rigid robots, this is usually
achieved by providing information about the current angle of revolute joints or
present length of prismatic joints. Soft robots lack physical joints and need to be
characterized with other parameters, which can describe the deformed state. An
example for these are the curvature of beam shaped elements or current lengths
of stretchable soft links. The task space describes the positions and orientations

6 2.1 Operation Spaces

of the end-effector at the tip of a robotic arm in space. Further, the workspace
is defined as a subset of the task space, which contains the physically reachable
positions and orientations of the end-effector.

In addition to the already mentioned spaces another space can be defined,
which includes information about the current state of actuators. In terms
of rigid robots it consists of the forces and torques applied to the joints by
actuators, for example electric motors. Soft robots exist in a variety of forms and
configurations, which is why the actuation methods vary from one to another.
For example, pneumatic robots are actuated by changing the volume or present
pressure of chambers, while tendon-driven robots possess electrical motors like
rigid robots, which provide forces and torques again. [ThuruthelEtAl18] separate
the actuation further by introducing an additional joint space. Commonly, the
actuating components of the system are connected with intermediate tools to
the actual soft robot. For example, tendon-driven robots do not utilize motors,
which directly change the robots shape, but instead have cables attached to
their body, which are pulled to change the robots configuration. Therefore, the
joint space incorporates information about the current length of the attached
cables of tendon-driven robots.

In order to formalize a complete system, all the spaces are connected with
mapping functions, resulting in a forward direction and inverse direction.
The overall system separation, including all spaces and mapping functions,
is visualized in Fig. 2.1. The actuation space is connected to the joint space
via a physical relationship, on how the lengths and resistance change once the
actuators apply an input. This actuation mapping is dependent on the chosen
manipulator and actuation system [WebsterJones10]. The relationship between
joint space and configuration space is represented by the equations of motion
of the system. Finally, the forward kinematics transform the state of the soft
robot to task space coordinates, such as the position of the end-effector in space.
For the inverse direction a mapping has to exist, which gives the requisite state
given desired task space coordinates. The inverse dynamics take the mapping
from necessary state configuration to needed inputs in the joint space. Lastly,
an inverse mapping of the actuation relationship provides the required input.

In contrast to classic fully actuated rigid robots, a clear separation of the system
into the depicted sub-moduldes in Fig. 2.1 is not straightforward for soft robots,
especially in the case for the inverse direction. Rigid robots can be fully modeled
by a finite discrete set of frames, while soft robots are a set of continuous particles
[ArmaniniEtAl22]. Therefore, describing the soft robots behavior is challenging.
Several solutions can exist for a suitable configuration to reach a point in space,

2 Fundamentals 7

Joint SpaceActuator Space Task Space

Equations of Motion Forward KinematicsActuation Mapping

Configuration
Space

Inverse Dynamics Inverse KinematicsInverse Mapping

Figure 2.1: Separation into the different operation spaces.

making the forward mapping a non-injective function, potentially. Surjection is
not guaranteed either. It can be the case, that not every desired outcome is
possible to achieve, especially in the case of dynamic motion. Finding a fitting
configuration for reaching a desired location with the end-effector can be trouble-
some for the inverse function. Therefore, bijection in general is not guaranteed
for the forward and inverse transformation. These hurdles complicate the model-
ing of soft robots and do not always support a strict separation of the workspace.
Some works exist, trying to describe each sub-mapping individually, others define
a more compact model, incorporating multiple of the sub functions. Because of
that, a separate consideration of forward and inverse direction is presented in
the following. Some of the more common methods for modeling soft robots are
introduced and explained. In particular for the inverse dynamics, an overview of
available research is provided and an additional insight into common approaches
applied to general underactuated multibody systems is presented.

2.2 Forward Direction

The forward direction aims to determine the system’s output given a known sys-
tem input. In that case, the actuation mapping is the first part of the forward
chain. It depends on the actuation choice of the real system, and therefore its
representation is rather straightforward and different for each individual system.
In contrast, the modeling of the kinematics and dynamics depends on the require-
ments, which the soft robot model has to meet. The model assumptions describe
the trade-off between accuracy and computational efficiency [ArmaniniEtAl22].
For example, online control or parameter optimization processes motivate quick
computation time, while high accuracy is favorable for evaluation of new actua-
tors and determination of structural loads.

8 2.2 Forward Direction

2.2.1 Full Finite Element Model

To achieve accurate modeling of the deformation of a soft robot, finite el-
ement methods (FEM) can be considered. FEM is one of the most popu-
lar numerical calculation methods for solving continuum mechanic problems
[ArmaniniEtAl22]. It allows incorporation of prior obtained knowledge of ma-
terial properties and provides precise and effective modeling of deformations of
flexible bodies [PolygerinosEtAl15]. FEM can be adapted to different complex
geometries and can provide a deeper insight into internal properties, for example
the interactions between layers of different materials [DingEtAl22]. Arbitrary
geometry shapes can be analyzed which is especially compelling for soft robots
with extraordinary shape [GouryDuriez18]. However, simulation by applying
FEM showed to result in high computation time to represent the deformation of
soft robots [CoevoetEtAl17], as deformations of cross sections are included during
the computation process. Especially in the case of complex geometrical shapes
a high number of voxels for modeling is necessary [DingEtAl22]. In that regard,
tasks requiring fast computation can only be performed with further approxima-
tions, such as linearization or model reduction [ZhengLin22]. Researchers intro-
duced workarounds, such as an asynchronous framework, that achieves a trade-off
between accuracy and computation time [LargilliereEtAl15]. Other approaches
exist which combine of FEM with piecewise constant curvature (PCC)-modeling
(introduced in Sect. 2.2.3) [RungeEtAl17] to overcome the issue of high compu-
tational cost. In general FEM methods produce highly accurate models of soft
robots, but are rather unsuitable for online real-time application.

2.2.2 Cosserat Rod

Many soft robots have a significant greater length compared to their cross sec-
tion which motivates the strategy to model it as a flexible beam. The continuous
Cosserat rod theory describes a long and thin soft robot by an infinite degrees of
freedom model, without explicitly considering its volume [SpillmannTeschner07].
This is achieved by stacking an infinite number of infinitesimal cross-sections. In
contrast to full FEM models, Cosserat rod models do not consider deformation
of the cross-section, which results in more computation efficiency. The rod is
characterized by its centerline along its longitudinal axis, depicted in Fig. 2.2.
With the assumption of rigid cross-sections along the centerline a continuous
function g(s, t) is defined, which describes the position and orientation of each
cross-section with respect to a global frame [XunZhengKruszewski23]. Solving
these continuous models is widely considered as overly complex and too costly
for fast real-time tasks [TillAloiRucker19]. The motion and orientation for each
point on the rod has to be calculated, which is why a discretization of a con-

2 Fundamentals 9

tinuum Cosserat rod is necessary. This can either happen on numerical reso-
lution level, when solving the continuous system directly, or by discretization
of the Cosserat rod model [ArmaniniEtAl22]. The latter method of before-
hand discretization of a continuous Cosserat rod allows faster computation times.
For example, [TrivediLotfiRahn08] and [RendaEtAl14] model manipulators using
continuous Cosserat rod theory, which produces highly accurate results but at
the cost of computational complexity. Another cosserat rod model is studied in
[RendaEtAl18] and shows better performance in terms of computation time.

z0
x0

g(s, t)

y0

z

xy

s

Figure 2.2: Cosserat rod parameterization by [XunZhengKruszewski23].

2.2.3 Piecewise Constant Curvature

One of the most popular approaches in modeling kinematics of a beam-like soft
robots is the idea of constant curvature. The PCC-approach is a simple method
for modeling the shape of soft robots. In comparison to the Cosserat rod model,
the geometrical description is achieved with a smaller number of parameters
[ShamilyanEtAl23], for example by the arc’s curvature κ, the arc’s length ` and
rotational quantities, such as an angle θ describing plane rotation. Parameter-
ization with these variables is depicted in Fig. 2.3. Methods, which are based
on the assumption of constant curvature along a soft robots longitudinal axis,
date back to [WebsterJones10]. This concept has been advanced to a discretiza-
tion of a slender soft robot into multiple segments, as with greater length robots
tend to show strong non-constant curvature. PCC has been widely studied in
the soft robotics community. [FalkenhahnEtAl14] use the parameterization of
[WebsterJones10] and derive a dynamic model following the Euler-Lagrange for-
malism. [RoneBen-Tzvi14] study forward dynamics, but with a different param-
eterization considering curvature β and γ in two direction in space, see Fig. 3.2.
With PCC, computation time can be kept very low for a small amount of seg-
ments, while still providing accurate results. However, singularity issues have
been reported in different studies [AllenEtAl20], usually appearing when the soft
robot is in a straight configuration. Zero-division operations can lead to singular-
ities not only in the kinematics but become more troublesome in the derivation
of the system dynamics [JensenEtAl22]. Furthermore, some continuum manipu-
lators can not be modeled precisely enough using PCC, such as conically shaped
robot arms [RungeEtAl17], requiring other methods for kinematic modeling.

10 2.2 Forward Direction

yi−1

zi−1

xi−1

`

θ

r = 1
κ

Figure 2.3: Constant curvature parameterization by [WebsterJones10].

2.2.4 Data-Driven Methods

Another option for precise representation can be achieved by applying data-driven
models. Learning a model is a beneficial alternative to the aforementioned ap-
proaches, when low computation cost is desired and a simplification to a beam
model is not possible. They come with the advantage of not requiring deriva-
tion of a physical model and provide fast computation, making them suitable
for real-time control [ArmaniniEtAl22]. Furthermore, data-driven methods are
capable of considering manufacturing errors by learning the inaccuracies, which
arise during assembly or production of the soft robotic system. Instead of de-
riving complex analytical models and performing parameter estimation experi-
ments, data-driven approaches require predetermined training data for approxi-
mating the highly non-linear functions of a soft robotic system. In that regard,
[ThuruthelRendaIida20] design recurrent neural networks to approximate the for-
ward dynamics to develop closed loop controllers. Similar, [ThuruthelEtAl17]
train neural networks and show that open loop predictive control can be per-
formed with the learned dynamic model. While learning based methods can pro-
vide accurate modeling, a major downside is the data collection for the training
procedure. Large datasets need to be generated in order to successfully learn the
highly non-linear functions. Generating training data can be very expensive and
costly, especially if not only a kinematic model but also dynamic model is learned.
Furthermore, changes to the real-physical system can not easily be considered.
Whereas for the aforementioned approaches parameters of the system can be up-
dated and therefore changes can be taken into account easily, data-driven models
need to undergo the complete training process again. Learning can take a long

2 Fundamentals 11

time, especially for complex systems, and additionally the training data might
have to be updated, when the real system is changed. In the same context, for a
another even slightly different soft robot training data and the model can not be
reused, potentially.

2.3 Inverse Direction

The reverse operation of finding a suitable input to reach a desire output is deter-
mined with the inverse model. While the forward direction can be completed by
considering a kinematic model together with a dynamic model derivation, result-
ing in the equations of motion, the inverse direction is rather difficult to design
due to infinite number of degrees of freedom. In terms of inverse kinematics,
many works present different approaches to determine the system input for a soft
robot. For example, [GiorelliEtAl12] model 2D kinematics using Cosserat rod
theory and approximate the inverse kinematics by deriving a Jacobian. Results
showed high computational cost and low accuracy, motivating the representation
with feed-forward neural networks in [GiorelliEtAl13], extended in later work
with an additional layer to consider initial manufacturing inaccuracies and long-
term constant deflection of flexible materials [FangEtAl22]. However, completing
the inverse model by considering inverse dynamics remains a current challenge in
research. Therefore, representing the inverse dynamics remains an open topic in
current research.

2.3.1 Inverse Dynamics for Softrobots

As described above, the inverse kinematics problem has been solved with different
approaches, but only limited works exist, which consider representing dynamics
in the inverse direction. [AmouriMahfoudiZaatri19] take the common parame-
terization of [WebsterJones10] and use Euler-Lagrange approach for deriving a
dynamic model. However, their system is limited towards a single segment only
with 2 degrees of freedom, and uses simplifications to derive the models. To
solve the inverse dynamics problem, a simple Simulink system is implemented
together with numerical derivatives of velocities and acceleration. A spatial ex-
ample for a dynamic model is given by [JensenEtAl22], who design forward and
inverse dynamics with the PCC assumption introduced in [AllenEtAl20] by using
a recursive Newton-Euler approach, originating from rigid robotics field. How-
ever, their real robot is of a hybrid type, consisting of rigid links and pneumati-
cally actuated soft joints. [ThuruthelRendaIida20] design a closed-loop controller
for a soft robot by approximating the inverse dynamics controller with a neural
network.

12 2.3 Inverse Direction

2.3.2 Inverse Dynamics for Underactuated Systems

The lack of existing approaches to represent the inverse dynamics gives reason
to look at approaches from other research fields. Especially in the case of dis-
cretization into segments during the derivation of kinematic modeling, soft robots
can be seen as flexible multibody systems. These usually belong to the family of
underactuated multibody systems because their elastic deformation cannot be ac-
tuated directly [Drücker22]. This motivates to apply model inversion approaches
from underactuated multibody systems theory to soft robots.

A general approach for deriving the input-output relationship of a non-linear
underactuated system is given in [Seifried14], known as Byrnes-Isidori nor-
mal form. In this approach the system dynamics are transformed into the
Byrnes-Isidori normal form. This new state space representation can be used
to find an inverse model and determination of the system input. However,
derivation of the Byrnes-Isidori normal form becomes laborious for multibody
systems with a large number of degrees of freedom with multiple inputs and
outputs. The output function has to be determined in algebraic form and the
system needs to be present in input-affine form. Further, to bring the system
into the Byrnes-Isidoris normal form a non-linear state transformation is required.

As an alternative to the Byrnes-Isidori normal form, the servo-constraints ap-
proach is a promising alternative to solving the inverse problem for the present
system [Kirgetov67]. This method has been studied for significantly complex
systems in [Drücker22]. On behalf of determining a control input strategy,
the equations of motion describing the dynamic behavior are extended by con-
straints. These additional equations treat the system output as additional con-
straints on the system [BlajerKolodziejczyk04]. The systems governing equa-
tions together with the constraints appear as differential algebraic equations
(DAE), which can be solved as a constrained problem using numerical algorithms
[BlajerSeifriedKolodziejczyk15]. The advantage lies within combining the desire
to force the system output to follow prescribed motion and determining the con-
trol input during the solving process at the same time. The servo-constraints
realization is a simple and promising approach to handle the inverse direction of
underactuated systems, such as soft robots.

Chapter 3

Forward Model

After the previous chapter introduced common approaches for deriving forward
model for soft robots, this chapter contributes on establishing a representation for
the forward model. First, one of the aforementioned methods for modeling kine-
matics is chosen in Sect. 3.1. The kinematic model is then derived in Sect. 3.2.
Finally, Sect. 3.3 continues with determining the equations of motion to model
the forward dynamics.

3.1 Modeling Choice for Kinematics

As shown in the previous chapter, there exist several popular methods on
modeling forward kinematics of soft robots. Each method has their benefits and
disadvantages. These approaches are summarized in the following and one of
the methods is selected.

FEM provide very precise modeling, but come with the cost of expensive
computation, and for real-time application complex workarounds have to be
considered. The Cosserat rod theory models slender soft robots as flexible beams.
They allow fast computation times and provide highly accurate results. PCC
models are the most common choice because of their simplicity in application.
However, singularity appearance and potential inaccuracy depending on the
robots shape arise during application. Learning based strategies produce very
accurate results together with low computation cost but rely on extensive data
collection to train the models. Additionally, for dynamic modeling further
networks are required in addition to the kinematic networks.

14 3.2 Piecewise Constant Curvature Kinematics

For this work the PCC-approach is chosen for deriving a model for forward kine-
matics, due to its simple yet effective representation. The present soft robot has
a caterpillar-like shape, which shows promise on accurate modeling by segments
with constant curvature.

3.2 Piecewise Constant Curvature Kinematics

The PCC-approach is one of the most common and oldest choice for modeling
soft robot kinematics. The robot is discretized into N segments, as visualized in
Fig. 3.1. The bending of each segment i is described by parameters locally. The
transformation from one frame to another is given by a positional vector pi,loc,
pointing from the segment’s origin towards the tip, and rotation matrix Ri,loc.
Both quantities pi,loc and Ri,loc are defined in the segment’s local frame.

yi−1

zi−1

xi−1

yi

zi

xi

pi,loc

ni,bp

Figure 3.1: Modeling with the PCC-approach.

3.2.1 Parameterization

In this work two parameterization strategies for describing each of the
i = 1 . . . N segments are examined. The first parameterization is introduced
in [RoneBen-Tzvi14]. The authors parameterize each segment by separate
curvatures βi and γi in x and y direction, together with a third additional
coordinate εi, which represents the twist angle. However, for this work the angle
εi is neglected as experimental results showed it’s negligible impact on the model
[RoneBen-Tzvi14], [Wiek21]. The parameterization is visualized in Fig. 3.2.

3 Forward Model 15

yi−1

zi−1

xi−1

ry = 1
γi

rx = 1
βi

r = 1
κi

Figure 3.2: Parameterization according to [RoneBen-Tzvi14].

These three coordinates are then used to calculate intermediate coordinates, the
total curvature κi, the bending angle ϕi and plane orientation θi, given by

κi =
√
β2
i + γ2

i , (3.1)
ϕi = κiLi, (3.2)
θi = arctan 2(γi, βi). (3.3)

The parameters are then used to derive the position vector pi,loc and rotation
matrix Ri,loc. Together they describe the transformation between each segment.

While this parameterization is very clear and straightforward, it comes with a
few disadvantages. First it contains singularities for certain configurations. The
position vector p defines a singularity when a segment reaches the straight po-
sition, κi = 0. A division by zero appears in all three coordinates. The critical
terms are

f1(ϕi, κi) = (1 − cosϕi)
κi

, (3.4)

f2(ϕi, κi) = sinϕi
κi

. (3.5)

16 3.2 Piecewise Constant Curvature Kinematics

The term f1 appears in the x and y coordinates, f2 in the z coordinate of p. For
zero curvature κi = 0 the bending angle becomes ϕi = 0 and in all entries of
pi a division of 0 by 0 occurs. Because this is a removable singularity the case
of κi = 0 and ϕi = 0 can be considered separately. The robot is in its straight
configuration then, where

pi =
[
0 0 Li

]
. (3.6)

A second disadvantage is given by the arctan 2(y, x) operation used in Eq. (3.3).
The function is not defined if the numerator and denominator both are zero.
Many programming languages, such as Matlab and Python, assign a value to
replace the singularity and provide a result once the operation is called with x = 0
and y = 0 (both return 0). But if additional trigonometric operations are called
on top of the very operation, these languages tend to simplify the expression for
computation speed, for example

cos(arctan 2(y, x)) = x√
x2 + y2 (3.7)

sin(arctan 2(y, x)) = y√
x2 + y2 . (3.8)

This leads to further singularities. To avoid the simplification, the cos(x) and
sin(x) operation can be replaced by Taylor expansions at x = 0 again which
results in a defined configuration at κ = 0 for the kinematics.

Third, for the derivation of the forward dynamics in Sect. 3.3, both, the position
vector p and rotation matrix R have to be differentiated by the coordinate pa-
rameters, which again results in several terms possessing a division by κ. The
reason for the appearing of a division by zero is the differentiation of arctan 2,
which results in

∂

∂x
arctan 2(y, x) = − y√

x2 + y2 , (3.9)

∂

∂y
arctan 2(y, x) = x√

x2 + y2 . (3.10)

These expressions are deeply nested throughout all of the derived terms necessary
for the dynamics and replacing them by approximations for the case of a straight
configuration becomes nearly impossible.

3 Forward Model 17

Because of this, [RoneBen-Tzvi14] and [Wiek21] add very small values to the
parameters γi and βi once they approach 0, in order to avoid the singularity.
However, this results in a severe discontinuity in the function, which remains a
problem for numerical solvers, as jumps in the function can be problematic to
handle for solvers with variable step size control.

Because of the unsatisfying approaches to deal with the singularity occurrence,
[AllenEtAl20] presented a non singular parameterization. It is derived from a
single rotation around an axis from the base frame to the tip frame of a segment,
which becomes advantageous as no plane rotation is required and therefore
the differentiation of arctan 2 is omitted. Their parameterization does include
singularities for the straight configuration, too, but they can be replaced by
Taylor expansion, again. This promises a reliable description of the kinematics
and no nesting of singularity expression during the derivation of the dynamics in
Sect. 3.3 evolves. Furthermore, [JensenEtAl22] chose the very representation for
deriving dynamics for their robot.

[AllenEtAl20] introduce a rotation vector to paramterize each segment. It consists
of positive rotations µ and ν around the x- and y-axis

w =
[
µi νi 0

]T
. (3.11)

The length of a segment s is introduced as an additional parameter but not
included in the rotation vector Eq. (3.11). However, two adjustments have been
made for this work. First, the real robot model possesses a pattern in its body
shape, which motivates to separate the robot into segments with fixed lengths
s = Li, chosen according to the dimensions. Second, because the rotation around
the x-axis is defined as mathematically positive, negative values for µ will result in
bending in positive x direction. To avoid this, µ is defined as a negative rotation
around the x-axis in this work. The parameterization of [AllenEtAl20] is shown
in Fig. 3.3.

The total bending angle of a segment can be obtained by

ϕi = ‖w‖ =
√
µ2
i + ν2

i . (3.12)

The relationship between the length Li and total rotation ϕi is given by

Li = ϕi‖ρi,loc‖. (3.13)

Here ρ describes the vector pointing at the center of the circle formed by the
bent spine. It is given as

18 3.2 Piecewise Constant Curvature Kinematics

yi−1

zi−1

xi−1

νi−1
µi−1

ρi,loc

Li

Figure 3.3: Parameterization according to [AllenEtAl20].

ρi,loc = Li
ϕ2
i

νiµi
0

 . (3.14)

With the appropriate parameters chosen the position vector is given by

pi,loc =

−ρi,loc,xσi
−ρi,loc,yσi
‖ρi,loc‖Sϕi

 (3.15)

with ρi,loc,x and ρi,loc,y being the x and y entries of ρi,loc. Then the single rotation
in the bending plane is accomplished by multiplication with the rotation matrix

Ri,loc =

 σiν̄
2
i + 1 σiµ̄iν̄i ν̄i sinϕi

σiµ̄iν̄i σiµ̄
2
i + 1 µ̄i sinϕi

−ν̄i sinϕi −µ̄i sinϕi cosϕi

 (3.16)

with σi = cos(ϕi) − 1, ν̄i = νi
ϕi

and µ̄i = µi
ϕi

. Thus, the vector of generalized
coordinates of a single segment is given by

yi,loc =
[
µi νi

]T
. (3.17)

Here, y represents the general generalized coordinate vector

y =
[
yT1,loc yT2,loc . . . yTN,loc

]T
. (3.18)

3 Forward Model 19

The previously mentioned singularities appear for a straight segment configura-
tion µi = 0, νi = 0 and therefore ϕi = 0, again, where both the position vector
pi,loc and rotation matrix Ri,loc possess zero divisions in almost every entry. How-
ever, all of these zero divisions appear in the form of

g1(ϕ) = (cosϕ− 1)
ϕ2 (3.19)

g2(ϕ) = sinϕ
ϕ

(3.20)

which can be approximated by a Taylor expansion at ϕ = 0. It should be noticed,
that even though the cosϕ of R

(3,3)
i,loc does not bother in the kinematic relationship,

the cos function does create a zero division during the differentiation. But again,
this term can be approximated with a Taylor series, too. This completes the full
representation of the kinematic relationship as well as solidifies a basis for the
derivation of the dynamic relationships in Sect. 3.3

3.2.2 Global Frame

Now that a complete parameterization for a single segment is established, a
transformation of all quantities into a global coordinate frame is beneficial. The
global frame is placed on the center axis at the point where the soft robot sticks
out of its socket. The origin of the first segment coincidences with the global
frame.

To express the rotation and position of each segment in the global frame, a
recursive calculation can be performed. The local rotation matrix Ri,loc and
local position vector pi,loc expressed in each segments frame i are calculated for
i = 0 . . . N . Then the global rotation and position of a single segment can be
obtained by

Ri =
{

Ri,loc for i = 1
Ri−1 · Ri,loc for i > 1 (3.21)

and

pi =
{

pi,loc for i = 1
pi−1 + Ri−1 · pi,loc for i > 1 (3.22)

20 3.3 Forward Dynamics

for i = 0 . . . N . Each segments origin frame coincidences with its predecessors tip
frame. The global frame is denoted with x0,y0, z0. For the actual implementation
of the recursive algorithm the position vector p0 and rotation matrix R0 of the
global frame are chosen as

p0 =
[
0 0 0

]T
(3.23)

R0 = I (3.24)

with I ∈ R3×3 being the identity matrix.

3.3 Forward Dynamics

In order to define a mapping between actuators and the generalized coordinate
vector, the dynamic behavior of the soft robot has to be described. This can be
accomplished by deriving the equations of motion, which represent the dynamic
behavior of a mechanical system. Following the Newton-Euler procedure
[SchiehlenEberhard20], the differential equations are determined by considering
the dynamic reaction of the system to acting loads.

For this purpose, each segment can be seen as part of a multi-body system and
it’s dynamic behavior represented by a differential equation. Fig. 3.4 displays
a simple sketch of the real robot together with the model used for parame-
terization, and visualization of a dynamic model. The real robot possesses
caterpillar-like shape. The largest deformation will occur at the notches between
the barrels. Therefore, the number of segments N can be chosen, so that each
segment contains the notches in the middle, as visualized in Fig. 3.4. The dy-
namic model then adds a virtual disk, that is characterized by a mass and inertia.

3.3.1 External Loads

External loads describe forces and moments, which effect the mechanical system
from outer sources. For the present soft robot the external loads consist of the
gravitational force only. The gravitational force of a segment always points in
negative z direction in the global coordinate frame, as the soft robot is placed in
a socket that is fixed to the ground. With the mass mi of the segment i and the
gravitational acceleration g the gravitational force is described by

3 Forward Model 21

y

z

(a) (b) (c)

mi, Ii

mi, Ii

mi, Ii

mi, Ii

Figure 3.4: Visualization of the system: the real robot simplified (a), sketch of
the parameterization model (b) and dynamic model (c).

fg,i =
[
0 0 −mig

]T
. (3.25)

3.3.2 Actuation Loads

The actuation of the soft robot is achieved with cables attached to the soft robot’s
tip. Because the cables are guided through bolt holes in the robot’s segments each
segment underlies forces and torques, induced when the robot is bend by pulling
the cables. Each segment has six guides in total, where cables can be pulled
through. For this work only three cables are deployed, which results in six forces
acting on a single segment, three at the upper holes u and three others at the
lower holes d. The position of the cable guide holes on the downwards surface of
a single segment in the local coordinate frame can be described by

22 3.3 Forward Dynamics

rdi,1,loc =
[
rholes 0 −lholes/2

]T
(3.26)

rdi,2,loc =
[
−rholes/2 rholes

√
3/2 −lholes/2

]T
(3.27)

rdi,3,loc =
[
−rholes/2 −rholes

√
3/2 −lholes/2

]T
. (3.28)

The cable guide holes on the upwards surface are given by

rui,1,loc =
[
rholes 0 lholes/2

]T
(3.29)

rui,2,loc =
[
−rholes/2 rholes

√
3/2 lholes/2

]T
(3.30)

rui,3,loc =
[
−rholes/2 −rholes

√
3/2 lholes/2

]T
. (3.31)

Here,the quantity rholes represents the radius of the circle around the central axis,
on which the holes are positioned, and lholes denotes the length of the drillt holes.
The position of the bolt holes is displayed in Fig. 3.5.

x

y

120◦

x

y

lholes

rholes

z

Figure 3.5: Positions of the bolt holes.

Then the positions of the cable guide holes rui,q and rdi,q with q = 1 . . . 3 can be
transformed to the global frame by

rdi,q = pi + Ri · rdi,q,loc (3.32)
rui,q = pi + Ri · rui,q,loc (3.33)

3 Forward Model 23

with q ∈ {1, 2, 3} denoting the according hole. In order to calculate the forces
induced by pulling the cables, the effective direction has to be determined first.
Each segment experiences two forces for each cable, a force acting towards the
previous segment and a force acting towards the following segments. To obtain
the effective direction, the positional vectors of two segments pointing towards
the holes can be utilized, which guide the same cable.

c3,i+1→i

c3,i→i+1

c1,i+1→i

c2,i+1→i

c1,i→i+1

c2,i→i+1

Figure 3.6: Separation into the different operation spaces

Then the normalized direction vector for the cable force towards the previous
segment becomes

ci→i−1,q =
rui−1,q − rdi,q

‖rui−1,q − rdi,q‖
(3.34)

and towards the following segment

ci→i+1,q =
rdi+1,q − rui,q

‖rdi+1,q − rui,q‖
. (3.35)

For the last segment there is only forces acting towards the previous segment and
therefore Eq. (3.35) can be set to

cN→N+1,q =
[
0 0 0

]T
. (3.36)

With the normalized direction vectors the forces acting towards base direction
can be calculated by

24 3.3 Forward Dynamics

fi→i−1,cab =
3∑
q=1

(
ci→i−1,q ·

N∑
n=i

Fn,q

)
. (3.37)

Here Fn,q describes the cable force value acting on the segment i at the hole q.
Note that the index for the second sum starts at the very segment i. All forces
acting on the segment i and the following ones are included in the sum.
Similarly, the force pulling the segment i towards the tip direction is induced by
all cable forces of the following segments i+ 1 . . . N and is calculated by

fi→i+1,cab =
3∑
q=1

ci→i+1,q ·
i+2∑

n=i+1
Fn,q

 . (3.38)

Because the cable forces are not located in the center of every segment each force
induces a torque around the center of mass. The torque caused by the cable
forces originating for the previous segment i− 1 can be obtained by

`i→i−1,cab =
3∑
q=1

((
Ri · rdi,q

)
×
(

cq,i→i−1 ·
N∑
n=i

Fn,q

))
(3.39)

and the torque caused by the cable forces originating from the following segment
is calculated with

`i→i+1,cab =
3∑
q=1

(Ri · rui,q
)

×

cq,i→i+1 ·
N∑

n=i+1
Fn,q

 . (3.40)

3.3.3 Internal Loads

During actuation the cables force the robot to bend, which causes the elastic
material to deform. This deformation causes internal torques, which react to
the cable forces. Both bending torques and torsional torques appear in theory,
but because of the limited actuation with three cables, allowing bending in x− y
direction only, very small torsional effects occur. In the work of [RoneBen-Tzvi14]
and [Wiek21] the torsional loads have been taken into account, given in the form
of

`i,tor = GIloc,zz · εi
Li
. (3.41)

The shear modulus of the elastic material, which the robot consists of, is denoted
by G and Iloc,zz is the inertia around the z axis. But the evaluation showed

3 Forward Model 25

little influence of torsion during bending, which is why it is neglected in this work.

According to [GrossEtAl09] a homogeneous beam, which bends with total curva-
ture κi, experiences a torque depending on κi. Therefore the pure torque value
for a single segment is given by

`i,bend = EIloc,xx · κi = EIloc,xx ·

√
µ2
i + ν2

i

Li
(3.42)

with E denoting the Young’s module of the elastic material and Iloc,xx being the
inertia around the x-axis. Considering the free body diagram of a single elastic
segment both ends experience bending by the acting torques but with a different
sign. Therefore, `bend,i acts on the current segment as well as on the previous
segment. Then the vector representations of the bending torques, which act on
two disks connected to the same elastic link, can be obtained by

`i,bend = −`i,bend · ni,bp (3.43)
`i+1→i,bend = `i+1,bend · ni+1,bp. (3.44)

The equations include the normal of the bending plane, visualized in Fig. 3.1 of
a single segment represented in the global frame

ni,bp = Ri−1 ·
[
− sin(θi) cos(θi) 0

]T
. (3.45)

Eq. (3.45) includes the rotation angle to the bending plane θi = arctan 2(µi, νi),
which turned out to be challenging in combination with another trigonometric
function, as seen in Eq. (3.7) and Eq. (3.8), respectively. But because this
hurdle appears in this equation only and no further relationship is derived
from Eq. (3.45) the cos and sin functions can be replaced by their Taylor
approximations.

Lastly, damping can be considered for the given system. Commonly, soft
robots show rather high damping [ThuruthelRendaIida20]. To investigate
on the damping, the present soft robot is moved out of its state of equilib-
rium by hand. Once the robot is bend far enough, the robot is let go and the
position of the tip is tracked. The measured tip positions are depicted in Fig. 3.7.

The damping ratio δ can be determined by considering the measured amplitudes
of the oscillation. Here, the first four amplitudes of two successive peaks are

26 3.3 Forward Dynamics

0 1 2 3 4 5 6

−0.2

0

0.2

time t [s]

x
-p

os
iti

on
[m

]

Figure 3.7: Measured position of the robot’s for free vibration.

considered. In order to determine the damping ratio δ the logarithmic decrement
ζ is considered. It is computed by

ζ = ln
(
y1 − y3

y2 − y4

)
. (3.46)

The amplitudes y1−4 can be read from the graph and the value for ζ computed
to

ζ = ln
(0.179 m − 0.1391 m

0.1297 m − 0.0198 m

)
= 0.0199. (3.47)

Then the damping ratio is computed by

δ = ζ√
ζ2 + (2π)2

(3.48)

The result shows a rather small damping ratio of δ = 0.00317 for the present soft
robot, which is why damping is neglected in this work.

3.3.4 Equations of Motion

At last, the inertia tensor Ii of each segment i is required for the derivation of
the equations of motion. It is given by

3 Forward Model 27

Ii = RT
i ·

Iloc,xx 0 0
0 Iloc,xx 0
0 0 Iloc,zz

 · Ri. (3.49)

The equations of motion are obtained by following the Newton-Euler formalism.
The Newton-Euler equations are derived locally for each segment in the global
frame and then reassembled into the form

M(y, t)ÿ + k(y, ẏ, t) = q(y, ẏ, t) + B(y)u. (3.50)
Here, M (y, t) ∈ Rf×f denotes the symmetric mass matrix, k(y, ẏ, t) ∈ Rf rep-
resents the the Coriolis, centrifugal and gyroscopic forces and q(y, ẏ, t) ∈ Rf

are the applied forces, with f = 2 · N . This representation includes the input
u ∈ Rm to the system together with the input distribution matrix B(y) ∈ Rf×m

providing a mapping between the input values and generalized coordinates. In
other words, B(y) is the sum of all cable force and torque vectors. Then, the
input u consists of m = 3 forces

u =
[
Fcab,1 Fcab,2 Fcab,3

]T
, (3.51)

which are induced by the cables used for actuation. It is assumed that the cable
forces stay consistent and each hole experiences the same absolute force value
being the total cable force, without additional consideration of friction loss.

3.4 Actuation

In this work only three cables are used for actuation. Therefore, the soft robot can
only bend one directional, which allows only C -shapes. To achieve bending, only
two of the three cables need to be pulled. The third one has to be lose to allow
the movement. For this purpose, an additional input-mapping is required. For
the present work, the robot’s workspace is divided into three pieces. Each piece
lies between two bolt holes. The according cables, which are routing through
these holes, are the actuation inputs for the very workspace. The workspace
distribution is characterized with the addition of an angle ψ defined in the x-y
plane. A mapping can then be established as

u =
[
Fcab,1 Fcab,2 Fcab,3

]T
= ΦT · ured (3.52)

28 3.4 Actuation

with ured denoting the reduced unknown input consisting of the two active forces.
The mapping matrix Φ is dependent on the location of the desired tip position,
given by

Φ =

[
1 0 0
0 1 0

]
for ψ ∈ [0, 120◦)

[
0 1 0
0 0 1

]
for ψ ∈ [120◦, 240◦)

[
0 0 1
1 0 0

]
for ψ ∈ [240◦, 360◦)

(3.53)

with ψ = arctan 2(z̃y, z̃x). The two values z̃y and z̃x are the x and y coordinates
of the desired output position of the end-effector, explained in Sect. 3.5. For
example, if ψ = 90◦ the force input to the system is

[
ured 0

]T
. The actuation

areas for each motor are visualized in Fig. 3.8.

y

x
Motor 3 and 1 are activeMotor 1 and 2 are active

Motor 2 and 3 are active

1

2 3

Figure 3.8: The three areas and active motors.

The three cables, which are attached to the robot, are pulled by three motors. If
the current state y is known the required change in length for each cable can be

3 Forward Model 29

computed by the kinematics. It is determined by evaluating the robot’s shape at
the current state y and the positions of the bolt holes in space. The denominator
in Eq. (3.35) gives the current distance between the bolt holes for the robot with
its current shape at y. Then the change in length of a single cable q = 1 . . . 3 is
obtained with

∆lK,q = lcab,y0 −
N∑
n=0

(‖rdn+1,q − run,q‖)|y. (3.54)

However in practice, the cables and the robot itself can stretch under load. There-
fore, simple kinematic actuation is not sufficient enough and the elasticity has to
be taken into account. This is achieved by modeling a virtual spring. The force
of a spring can be obtained by considering Hooke’s law

Fcab,q = ∆lF,q · cq (3.55)

with ∆lF,q denoting the change in length of the virtual spring, here the change
in cable length, and cq a positive real value, the spring coefficient. Once cq is
determined experimentally, the required change in cable length can be calculated
in order to exert a certain force on the robot. The total change in cable length
is then the addition

∆lq = ∆lF,q + ∆lK,q. (3.56)

For the latter actuation of the real physical robot in Chap. 6, ∆lq has to be con-
verted to the necessary angular rotation αq of the motors. This is accomplished
by

αq = 2∆lq
dreel

, (3.57)

where dreel denotes the diameter of the reels mounted to the motors.

3.5 Output

Finally, a system output z can be chosen, which completes the forward direction
of the system. The output is defined by a function h, which sets the relationship
between the generalized coordinates y and the desired output z

30 3.5 Output

z = h(y). (3.58)
To achieve accurate trajectory tracking, an appropriate output has to be chosen
that can represent the workspace of the softrobot. For example, rigid robotic
arms with defined joints are commonly used to approach chosen points in the
working area of the robot and therefore an output representation of positional
information of the end effector is favorable

z =
[
xN yN zN

]T
. (3.59)

However, for the present soft robot the operation space is limited to a cropped
spatial ellipse around the robots base Fig. 3.9. This is due to the fact, that in
its current configuration the robot will take the shape of a half circle only, when
actuated. The limitation to three cables allows no S -shaped configuration, which
would be required to reach any given point in a spacial working area. With only
three cables attached only two degrees of freedom are available resulting in an
operation space in form of a hull around the robots base.

In order to achieve accurate trajectory following, the output z should return an
appropriate output representation. A straightforward representation would be to
consider the total rotations µ and ν as the output values directly with h being a
unity matrix. However, this would require a definition of the desired trajectory
with the same representation, which will be laborious to determine. Another
promising approach is the representation of the tip position with spherical coor-
dinates because of the almost spherical shaped task space, defined by

rp =
√
x2 + y2 + z2 (3.60)

ϕp = arccos z
rp

(3.61)

θp = arctan 2(µ, ν). (3.62)

The spherical coordinates come with the advantage of reusing the already
previously applied definition for the plane orientation θp. However, since the
workspace is limited to an elliptical hull the spherical coordinates are rather
complicated, as only two degrees of freedom limit the choice for the coordinates.
Choosing one of the coordinates as constant, e.g. the radius rp will result in a
round hull rather than a spherical one. Therefore spherical coordinates do not
provide any significant advantage.

3 Forward Model 31

y
z

y

x

Figure 3.9: Elliptical workspace and workspace described by spherical coordi-
nates for constant radius rp.

Instead, another output representation can be considered by fixing the output to
an x-y projection of the hull, seen in the lower part of Fig. 3.9. When looking
from a top-down view each point on the hull can be described by the x and y
parts of the global position vector of the soft robot’s end-effector. The position
in z is then given by choosing x and y. This results in an output given by

z = h(y) =
[
px,N(y) py,N(y)

]T
. (3.63)

It should be noted, that the position vector of the last segments end might be
not sufficient depending on the design of the actual system. In this work the
robot is equipped with a cube used as an end-effector. The cube will be tracked
as explained in Chap. 5. Because of that z will be extended by considering the
additional length in zN in the local frame of the last segment.

Chapter 4

Inverse Model

This chapter addresses the derivation of the inverse model, which is required to
determine the necessary system input for reaching a desired output. For this pur-
pose, the servo-constraints approach is chosen, which is introduced in Sect. 4.1.
Afterwards, the system is completed by incorporating the servo-constraints frame-
work into the equations of motion in Sect. 4.2.

4.1 Inverse Model with Servo-Constraints

With the equations of motion Eq. (3.50) completing the forward mapping
between joint space and configuration space, an inverse relationship is derived
to complete the model. Given an output z the according input u is deter-
mined, in order to achieve feedforward control for trajectory tracking. The
servo-constraints approach allows for a representation of the inverse direction.

4.1.1 Basic Concept

In general, servo-constraints are treated as motion specification on a system and
have to be distinguished from classical contact and passive constraints, such as
hard surfaces or rigid joints and links [BlajerSeifriedKolodziejczyk15]. The con-
straints s(y, t) are defined on positional, velocity and acceleration level, by en-
forcing the output of the system to be equal to the desired output motion, which
is given by

34 4.1 Inverse Model with Servo-Constraints

s(y, t) = h(y) − z̃(t) = 0 (4.1)
ṡ(v,y, t) = H(y)v − ˙̃z(t) = 0 (4.2)

s̈(v̇,v,y, t) = Hv̇ + Ḣv − ¨̃z(t) = 0. (4.3)

Here, the specified output position, velocity and acceleration are denoted as z̃(t),
˙̃z(t) and ¨̃z(t), respectively. For the servo-constraints on velocity and acceleration
level, the output function h needs to be differentiated twice, resulting in the
Jacobi matrix H = ∂h

∂y
and its derivative by time Ḣ . Here, v denotes the

differentiation of y with respect to time and v̇ the further derivative of v with
respect to time.

The soft robot considered in this work is an underactuated system. This becomes
clear when the dimension of the input is considered,

m = dim(ured) = 2 ≤ f. (4.4)

This is the case, if the robot is described with more than one segment in the
PCC. Only in the case of N = 1 the system is fully actuated. Consequently,
the motion of the system is fully specified for a parameterization with only one
segment (f = 2) and partly specified for any other case

dim(z) = 2 ≤ f. (4.5)

Under the assumption of a fully actuated system and therefore fully specified
motion, an input-output relationship can be derived by reassembling the servo-
constraints and addition of the equations of motion Eq. (3.50) to

ũ(t) = (H̃M̃−1B̃)−1(¨̃z(t) − H̃M̃−1(q̃ − k̃) − h̃). (4.6)

The required input ũ(t) is directly related to the specified output
acceleration ¨̃z(t), where the tilde denotes quantities evaluated at ỹ, ṽ and
t. The f × f matrix Y (y) = H̃M̃−1B̃ is assumed to be invertible for
the set assumptions and a control law can be established straightforward
[BlajerSeifriedKolodziejczyk15].

As mentioned above, the soft robot is an underactuated system for the case
of choosing more than a single segment to describe the robots configuration.
Then the matrix Y (y) is of size m × m and can be of maximal rank or can

4 Inverse Model 35

be rank deficient. In the case of maximum rank all m specified outputs can
be actuated by the m system inputs directly. Internal dynamics remain in the
system, which are influenced by the inverse dynamics control. These can be of
stable nature (minimum phase system) or destabilize the underactuated system
in partly specified motion (non-minimum phase system) [Tomlin01]. For rank
deficiency, the outputs are not directly actuated by the system inputs and the
servo-constraints have to be designed through dynamical couplings in the system
instead [BlajerSeifriedKolodziejczyk15].

To realize servo-constraints for the given system, first the stability of the internal
dynamics is examined. From a control theory perspective an eigenvalue problem
is analyzed, which provides important information on the stability of the internal
dynamics. Second, the input-output relationship will show if rank deficiency is
present for the matrix Y and how the servo-constraints can be designed.

4.1.2 Stability Analysis of Internal Dynamics

In classic control theory, single-input single-ouput (SISO) systems are character-
ized by the transfer function G resembling the relationship between system input
and output. In the frequency domain s ∈ C this relationship is defined by

G(s) = Y (s)
U(s) = pn(s)

pd(s)
(4.7)

where U(s) marks the system input and Y (s) the system output. The transfer
function is a fraction of the numerator and denominator polynomials pn(s) and
pd(s), whose roots are called zeros and poles of G(s), respectively. Consequently,
the inverse model is given by

U(s) = G(s)−1Y (s) = pd(s)
pn(s)Y (s), (4.8)

where the poles of the forward dynamics become the zeros of the inverse
dynamics. Therefore, if the zeros of the forward dynamics are in the left-half
plane of the root locus diagram the inverse dynamics are minimum phase and
the inverse systems possesses stable internal dynamics.

For the local analysis of multiple-input multiple-output (MIMO) system, as the
present soft robot, the analysis begins with the linearization of the equations of
motion at a stationary linearization point [Seifried14]

36 4.1 Inverse Model with Servo-Constraints

[
ẏeq
v̇eq

]
=
[

veq
M (yeq)−1 (q(yeq,veq) − k(yeq,veq) + B(yeq)ueq)

]
= 0. (4.9)

The linearized equations of motion for small values around the point of equilib-
rium ỹ = y − yeq, ṽ = v − veq and ũ = u − ueq are

Mlin ¨̃y + Dlin ˙̃y + Klinỹ = Blinũ (4.10)
Hlinỹ = 0, (4.11)

with

Mlin = M (yeq) (4.12)

Dlin =
(
∂k

∂ẏ
− ∂q

∂ẏ

)∣∣∣∣∣
yeq,ẏeq

(4.13)

Klin =
(
∂k

∂y
− ∂q

∂y
− ∂Bueq

∂y

)∣∣∣∣∣
yeq,ẏeq

(4.14)

Blin = B(yeq) (4.15)
Hlin = H(yeq). (4.16)

It should be noted that only a single workspace is considered for the analysis and
therefore the input is reduced to two forces, therefore u = ured. The linearized
equations can be rewritten as

E∗ ˙̃x = A∗x̃ (4.17)

with the augmented state space vector

x̃ =
[
ỹ ˙̃y ũ

]T
(4.18)

and the two matrices

E∗ =

If 0 0
0 Mlin 0
0 0 0

 (4.19)

and

4 Inverse Model 37

A∗ =

 0 If 0
−Klin −Dlin Blin
Hlin 0 0

 . (4.20)

To obtain information about the stability of the system Eq. (4.17) can be viewed
as an eigenvalue problem

(A∗ − λ∗E∗)c∗ = 0. (4.21)

with λ∗ denoting the complex eigenvalues and c∗ being the eigenvectors. The
eigenvalues λ∗ can be either infinitely large or finite. The infinite eigenvalues
result from algebraic constraints with infinitely fast motion [GéradinCardona01]
while the finite eigenvalues represent the poles of the inverse system, and provide
information about the stability of the inverse dynamics [Drücker22].

The locations of the eigenvalues λ∗ obtained by Eq. (4.21) are shown in Fig. 4.1
in the case of N = 2 segments for parameters given in Tab. 5.1. The length Li =
and mass mi of both segments are equivalent to the values for N = 1 in Tab. 6.1,
but divided by 2. A point of equilibrium is computed by choosing an arbitrary
force input

u =
[
1 1 0

]T
(4.22)

and solving the equations of motion with zero velocity v = 0 and zero accelera-
tion v̇ = 0.

The analyzed system possesses 8 eigenvalues in total, with 4 having a zero real
part and infinite imaginary part. The other 4 do have zero real part too and
two of them lie at Im(λ∗) = 4.6502 while the other two lie at Im(λ∗) = −4.6502.
Because, no eigenvalue lies in the right half-plane the system’s internal dynamics
are stable for the case of two segments. This property is assumed to remain for
more segments.

4.1.3 Relative Degree

In order to realize trajectory following, the desired output z̃ has to be con-
tinuously differentiable for a control law to exist [Drücker22]. The amount of
differentiations required is given by the relative degree rrel. It can be determined

38 4.1 Inverse Model with Servo-Constraints

−4 −2 0 2 4
·10−2

−4

−2

0

2

4

Real axis

Im
ag

in
ar

y
ax

is

eigenvalues

Figure 4.1: The computed eigenvalues for a chosen state of equilibrium of the
internal dynamics.

by differentiating the output function z until the input u appears.

The relative degree is determined for a model consisting of two segments. The
number of chosen segments is assumed to be independent of the relative degree
as the same output trajectory z is chosen for any realization with an arbitrary
amount of segments. The output z is defined by Eq. (3.63). Then the output
is differentiated twice. With the insertion of Eq. (3.50) for the velocity v̇ the
acceleration is given by

z̈ = H(M−1(q − k + Bu)) + Ḣv. (4.23)

Note that Eq. (4.23) is equal to Eq. (4.6), only rearranged. The output had
to be differentiated two times until the input u appears and the system has a
relative degree of rrel = 2 consequently. In fact, the same parameters in Tab. 5.1
and Tab. 6.1, which were used for the stability analysis in Sect. 4.1.2, were
inserted and no input vanished. Therefore any desired trajectory, which the con-
tinuum robot should follow later on, needs to be two times differentiable the least.

The input-output relationship, expressed by Y (y), confirms all outputs can be
directly influenced by the systems input. The matrix is of size 2×2 because H ∈
R2×4, M ∈ R4×4, B ∈ R4×2. Y = HMB is invertible as rank(Y) = 2 = rrel.
Furthermore, looking from a control theory perspective again, the relative degree

4 Inverse Model 39

is equal to the difference between finite poles and zeros of the forward system
[Drücker22].

4.2 Completing the System

To realize the inverse direction of the system, the servo-constraints have to be
chosen in order to achieve an equal amount of differential equations to the number
of unknowns. In this work three unknowns in form of cable forces are present.
But a realization of servo-constraints for an uneven amount of unknowns is not
possible with a non-spatial output z ∈ R2. As previously explained, one of the
forces is assumed to be zero depending on the actuation area, Fig. 3.8. Therefore,
a total number of two servo-constraints is desired. The goal of trajectory following
reasons the choice of servo-constraints on positional level. With their addition
the overall inverse model can be rewritten in DAE form as

v = ẏ (4.24)
M (y, t)v̇ + k(y,v, t) = q(y,v, t) + B(y)u (4.25)

s(y, t) = 0. (4.26)

The number of equations now equals the number of unknowns and the system
can be solved for a state space vector in form of x =

[
y v u

]T
. In fact, with

a simple implicit Euler solver the DAE system can be solved by

0 = −xk+1 + xk + ∆t ·
[

vk+1
M−1

k+1(qk+1 + Bk+1uk+1 − kk+1)

]
(4.27)

0 = s(yk+1, tk+1) = zk+1 − z̃k+1 = h(yk+1) − z̃k+1 (4.28)

with the time step ∆t = tk+1 − tk for the integration and z̃k+1 denoting the
desired trajectory at tk+1, and

Mk+1 = M (yk+1, tk+1) (4.29)
qk+1 = q(yk+1,vk+1, tk+1) (4.30)

Bk+1 = B(yk+1) (4.31)
kk+1 = k(yk+1,vk+1, tk+1). (4.32)

40 4.2 Completing the System

By adding the servo constraint the solver is determining a solution for the state
x, that lets the soft robot’s tip follow the desired trajectory. The state x includes
the system input uk+1 and therefore determines the actuation forces, which need
to be applied to the soft robot in order to reach the desired tip position.

Chapter 5

Implementation & Setup

This chapter focuses on implementation details and setup of the real robotic
system. After a short overview in Sect. 5.2, on how the DAE system is solved,
Sect. 5.3 provides the equations for deriving custom trajectories, which will be
studied on the real system in Chap. 6. At last, an overview on hardware and
characteristics of the real soft robot is provided in Sect. 5.4.

5.1 Software Details

The main simulation environment, visualization and overall framework is imple-
mented in Python. Python is a high-level programming language, offering
quick and simple implementation, together with a variety of libraries for scien-
tific application. These are often implemented in fast compiler-based computing
languages, such as C and C++. The equations of motion and other system
functions, such as calculating the tip position given a state y, were derived using
Matlab Symbolic Toolbox and exported as C++ functions, to ensure quick
evaluation.

5.2 Solving the System

As previously mentioned in Sect. 4.2, the full DAE system Eq. (4.2) can be
integrated via the implicit Euler approach. In that regard, first Eq. (3.50)
is rearranged and solved for ÿ using the solve-function of Numpy Linear
Algebra library. The result for ÿ is included in Eq. (4.27) and together with
the servo-constraints a solution to xk+1 is computed using the optimize-library

42 5.3 Trajectory Generation

of Python’s Scipy package.

Especially in the case of six segments, solving to compute ÿ turned out to be
challenging, as for certain solver options no solution was found by the library.
Starting from an initial guess, which is chosen to be xk, the solution at k + 1 is
calculated, preferably using the root-function with the hybrid-method [Powell64]
of the Scipy package. However, close to the straight configuration the root find-
ing function struggled to find a solution, even for larger error tolerance. Instead,
least squares approach helped finding a solution for the initial straight state,
which is why a small area around the robot was defined, where the algorithm
would chose least squares-function of the Scipy library. For certain initial deflec-
tions it turned out to be beneficial to restrict x to stay withing a certain range,
e.g. non-negative values when moving in the positive quadrant. However, starting
from the straight configuration remains difficult for arbitrary initial directions,
which is why in this work the robot will always move in positive x direction first,
before following a trajectory. In fact, often the solver struggled to find an initial
solution and consequently fails to solve the system for any following step. In
this case, the initial direction for moving out of the straight configuration was
changed slightly by moving further into positive quadrant and away from the x-
axis, which helped the solver finding a solution. For any future projects it might
be beneficial to actuate the robot step by step solving the kinematics only, until
a desired starting position is reached.

5.3 Trajectory Generation

Trajectories provide spatial positions and velocities to track for a robot in mo-
tion control. In [Mueller19] a trajectory is defined as a function of time returning
positional information. A distinction between a purely geometric function def-
inition and a time scaling can be considered to establish a trajectory function
[SicilianoEtAl08]. The path only includes information about spacial desired po-
sitions and the total trajectory contains the additional timing law. Therefore,
generating appropriate trajectories starts with constructing a path omitting time
dependency first. Afterwards, the path is joined with time laws, which gives the
desired trajectory for the end-effector.

5.3.1 Path Generation

A path is a mathematical function in the form of f(s), with s denoting the
parameter, which represents the arc length

5 Implementation & Setup 43

f(s) = p =
[
px(s)
py(s)

]
. (5.1)

In this work f(s) defines a position vector in the x-y plane of the global frame and
is incorporated as f(s) = z̃ in Eq. (4.28). The position of the end-effector is de-
fined as in Eq. (3.63). In the following, three example trajectories are presented,
which the soft robot will track.

Straight Line

A very simple path is given by a straight line in space. It is defined by a starting
point p0 and an end point pe, connected by a line. The function f(s), describing
this path, is defined in [SicilianoEtAl08] by

f(s) = p0 + s

se
(pe − p0) (5.2)

with the parameter s ∈ [0, se]. The total arc length can be determined by

se = ‖pe − p0‖2 (5.3)

but is limited to the radius reachable area of the end-effector. The maximum
length of a straight line is equivalent to the diameter of the circular workspace,
which is why se = (0, 2ρ]. Here ρ denotes the radius of the workspace. When se
is equal to it’s upper limit both the starting point p0 and end point pe lie on the
circle defining the workspace.

Circle

Another basic trajectory is a simple circle. Circular trajectories are advantageous
paths for robotic manipulators. When the trajectory consists of several rotations
around it’s central axis, the robot experiences centrifugal forces, which drag the
robotic on a circular trajectory in addition to the actuation forces.
A circular path is described by the position of the circle’s center c and a point
on the radius of the circle p0, marking the starting point of the trajectory. Then
the path is described by

f(s) = c + rc

[
cos(s

rc
)

sin(s
rc

)

]
(5.4)

44 5.3 Trajectory Generation

where rc denotes the circle’s radius. The center of the circle c is chosen as the
center of the soft robot’s middle axis, here the origin of the global frame

c = 0. (5.5)

If desired, the circle can be shifted away from the origin, but only as far as to the
outer limit of the reachable area of the tip. In other words, the radius rc, which
is given by

rc = ‖c − p0‖2, (5.6)

is limited to the radius ρ of the soft robots workspace rc = (0, ρ] when Eq. (5.5)
holds. The parameter s is limited in the range s ∈ [0, se] again. Now the total
arc length se is equivalent to the circumference of the circular path

se = 2πrc. (5.7)

In case the soft robot’s tip should follow only a circular piece or execute several
circular movements, the upper limit se can be multiplied by a factor ς. For
0 < ς ≤ 1 the path becomes a circular piece and for 1 > ς the path consists of at
least one or more circular or partly circular rotations.

Rounded Triangle

The three cable actuation choice motivates a trajectory, which takes the point
symmetric bolt hole arrangement into account. An appropriate trajectory design
is a smooth triangular path, visualized in Fig. 5.1.

In particular, an outer triangle forms the general path, while polynomials are
used to replace the sharp edges by smooth curves. For this work, an isosceles
triangle is chosen as the general path. The edges of the rounded triangle are
constructed with three linear paths connected by three points pA,pB and pC .
The curved edges can be represented by polynomials of at least second order.
Each polynomial is constrained by the slope of the lines c, which form the outer
triangle, and two points, positioned along the triangles edges, marking the tran-
sition between the curved corners and straight lines. For example, the purple
rounded corner has the transition points pAB and pAC . The parameters of a
polynomial of second order depend not only on the slope of the straight lines c,
but on the positioning of the transition points, too. In other words, the vertex
point is determined by the slope and transition points and can not be chosen

5 Implementation & Setup 45

yq

x

pA

pBpC

pAC

pCB pBC

pCA

pAB

pBA

s

xq

c

p(xq)

Figure 5.1: Visualization of the triangular trajectory.

freely. A polynomial of higher order can be considered instead, which allows a
larger variety of curve designs for the triangles rounded corners. For this work,
a quartic function is chosen as

p(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (5.8)

to model the rounded corners of the triangular trajectory. It is positioned at the
origin of the xq-yq frame, colored gray in Fig. 5.1. From the triangle’s symmetry
it is obvious, that the terms of odd order vanish a3 = a1 = 0, which results
in a biquadratic polynomial. The parameters again depend on the slope of the
triangle, as well as on the positioning of the transition points. However, the
higher order allows a limited shifting of the vertex point. The vertex point can
be placed on similar height to the transition points, resulting in a flatter rounded
edge or even w type corners. If the vertex point lies closer to the intersection of
the lines, the biquadratic function takes a sharper form. The remaining non-zero
parameters of the polynomial can be obtained by the constraints

p(0) = a0, (5.9)
p(xAB) = yAB = a4x

4
AB + a2x

2
AB + a0, (5.10)

p
′(xAB) = c = 4a4x

3
AB + 2a2xAB (5.11)

46 5.3 Trajectory Generation

a0 = yAB + α(yA − yAB), (5.12)

a2 = 2
xAB

(
yAB − a0

xAB
− c

4

)
, (5.13)

a4 =
(

1
yAB

)4

(a0 − yAB + c

2xAB). (5.14)

Here, xAB and yAB are the x and y values of pAB. Once the polynomial is
determined, the path length of the biquadratic function from pAB and pAC can
be calculated. According to [Nystedt21], the path length of a function f(x) is
given by

sp =
∫ xp

0

√
1 + f ′(x)2 dx. (5.15)

Then the path length can be obtained by solving

sp = 2 ·
∫ xAB

0

√
1 + 16a2

4x
6 + 16a2x4 + 4a2

2x
2 dx (5.16)

using Scipy library. The path length sl of the straight edge is calculated with
Eq. (5.3). Then the whole path length of the triangular trajectory is given by

se = 3 · (sp + sl). (5.17)

The trajectory for the curved corners j = {A,B,C} can be expressed by a func-
tion

gj(x) = Rj

[
x

a4x
4 + a2x

2 + a0

]
(5.18)

defined in the x-y global frame, with Rj denoting the according rotation matrices
in the x-y plane

RA = I, (5.19)

RB =
[

−1
2

−
√

3
2 ,√

3
2

−1
2

]
(5.20)

RC =
[

−1
2

√
3

2
−

√
3

2
−1
2

]
. (5.21)

5 Implementation & Setup 47

The coordinate x is replaced by xj(s), which is a linear function determining x
given the arc parameter s. The function is defined between the transition points
pAB and pAC of the polynomial, given by

xA(s) = xAC + s

sp
(xAB − xAC) (5.22)

xB(s) = xAC + s− (sp + sl)
sp

(xAB − xAC) (5.23)

xC(s) = xAC + s− 2(sp + sl)
sp

(xAB − xAC) (5.24)

Note, that here the initial polynom at corner A, colored in purple in Fig. 5.1,
is rotated with Rj towards the corner j. The three equations differ in the frac-
tions, where previous arc lengths are considered. In fact, the equations can be
rewritten by considering the individual transition points of each corner, for ex-
ample in Eq. (5.23) by using pBA and pBC directly and omitting rotation by RB

in Eq. (5.18). The trajectory for the straight paths is expressed by equations
similar to Eq. (5.2), now taking the previous paths into account

hAB(s) = RA

(
pAB + s− sp

sl
(pBA − pAB)

)
, (5.25)

hBC(s) = RB

(
pAB + s− (2sp + sl)

sl
(pBA − pAB)

)
, (5.26)

hCA(s) = RC

(
pAB + s− (3sp + 2sl)

sl
(pBA − pAB)

)
. (5.27)

Finally, the overall trajectory can be defined as a piece wise function

f(s) =

gA(s) for 0 < s ≤ sp
hAB(s) for sp < s ≤ sp + sl
gB(s) for sp + sl < s ≤ 2sp + sl
hBC(s) for 2sp + sl < s ≤ 2(sp + sl)
gC(s) for 2(sp + sl) < s ≤ 3sp + 2sl
hCA(s) for 3sp + 2sl < s ≤ se

. (5.28)

It should be noted that the order of the polynomial and linear functions g and h
in Eq. (5.28) can be shuffled around. Later, during the experiments in Chap. 6
the desired triangular trajectory follows the linear edges first and then moves
along the first round corners. Additionally, the trajectory was mirrored around
the x-axis to align with the camera frame.

48 5.3 Trajectory Generation

5.3.2 Adding Time Dependency

As already mentioned in Sect. 4.1.3, the relative degree is rrel = 2. Therefore, the
desired trajectory needs to be rrel-times continuously differentiable for a feedfor-
ward control law to exist [Drücker22]. Once f(s) is chosen to define the trajectory
shape, the path is extended by the time dependency

s = s(t). (5.29)

Now in order to guarantee a valid feedforward control input the function s(t)
needs to be rrel = 2 times differentiable. This can be accomplished by choosing a
polynomial of minimum order rrel. However, in order to bound the trajectory to
initial conditions as well as ending constraints, the polynomial has to be chosen of
higher order [Mueller19]. The trajectory is constrained on position, velocity and
acceleration level to accomplish smooth movement. This results in total in nc = 6
constraints for the initial state t = 0 and final time at t = T . The total of nc = 6
constraints endorses a function s(t) with the same number of unknowns. This
can be accomplished by considering a polynomial of fifth order, which possesses
variable parameters ai for i = 0 . . . 5

s(τ) = a5τ
5 + a4τ

4 + a3τ
3 + a2τ

2 + a1τ + a0 (5.30)

with τ = t

T
. Then the constraints are set as follows

s(0) = 0 (5.31)
ṡ(0) = 0 (5.32)
s̈(0) = 0 (5.33)
s(1) = se (5.34)
ṡ(1) = 0 (5.35)
s̈(1) = 0. (5.36)

With these constraints and the chosen total path length se the polynomial be-
comes

s(τ) = (6τ 5 + 15τ 4 + 10τ 3)se. (5.37)

Fig. 5.2 visualizes the positional s(t), velocity ṡ(t) and acceleration functions s̈(t)
in a given time interval t ∈ [0, T].

5 Implementation & Setup 49

t

se

0
T0 t

se

0
T0 t

se

0
T0

(a) s(t) (b) ṡ(t) (c) s̈(t)

Figure 5.2: (a) Positional profile, (b) Velocity profile and (c) acceleration profile.

The positional curve shows how the manipulator moves slowly away from its ini-
tial position and smoothly approaches the desired ending point. Concurrently,
the manipulator’s velocity increases slowly in the beginning, when moving out of
it’s rest position, and decreases slowly in the end, when reaching it’s final desti-
nation. The peak velocity is accomplished in between, when the manipulator has
built up highest momentum. Finally, the acceleration plot shows how the robot
accelerates quickly in the beginning and afterwards drops towards a constant ve-
locity. When the robot nears its final destination, it’s acceleration drops again
and then the manipulator brakes slowly until the desired end position is reached.

5.3.3 Constant Velocity Profile

For a periodic movement it might be desirable to design a trajectory, which pos-
sesses a constant velocity region, instead of continuous non-zero acceleration.
[Zelinsky09] describes a straightforward recipe to follow, as well as, covers ad-
ditional special cases e.g. when the maximum acceleration is not reached. The
path’s parameter s(t) and its derivative namely the velocity ṡ(t), acceleration s̈(t)
and jerk ...

s (t) over time are displayed in Fig. 5.3. The velocity takes the shape
of a Double S -profile. After a smooth initial phase, characterized by a linear
acceleration followed by a linear deceleration phase, the velocity keeps a constant
value. Towards the end a mirrored S -shape reduces the speed again.

As seen in Fig. 5.3, three general phases can be distinguished. The first one
is the acceleration phase, where the velocity increases. It is further separated
into the constant maximum jerk period Tj1, followed by the zero-jerk, maximum
acceleration period Ta and completed by the minimum jerk period with the
same duration Tj1. The second is the constant velocity phase. Finally, in the
deceleration phase the velocity decreases again. Again, this phase is divided into
the same three periods as during the acceleration phase, but in opposite order.
The minimum and maximum jerk period is denoted by Tj2 and the minimum
acceleration phase is denoted by Td.

50 5.3 Trajectory Generation

se

ve

s0

v0

vmax

amax

amin

jmax

jmin
Tj1 Tj1

Ta Tv
Tj2 Tj2

Td

Figure 5.3: Double S -profile.

5 Implementation & Setup 51

In the following, only a simplified derivation of s(t) for the case of a constant
velocity profile will be presented, which is based on certain assumptions and
constraints. The complete general approach together with consideration of all
possibly occurring special cases can be found in [Zelinsky09]. First symmetric
limits are set for v = ṡ(t), a = s̈(t) and j = ...

s (t), resulting in

vmin = −vmax (5.38)
amin = −amax (5.39)
jmin = −jmax. (5.40)

Second, zero initial and final accelerations a(0) = 0 and a(1) = 0, as well as
generic zero initial and final velocities v(0) = 0 and v(1) = 0 are chosen. Further,
the s-profile at the end is set to be equal to the initial S -profile but mirrored,
which results in equal time segments Tj1 = Tj2 = Tj and Ta = Td. At last,
s(0) = s0 = 0 is set.

Acceleration phase t ∈ [0, Ta]

The acceleration phase is characterized by a linear profile from the initial zero
acceleration to the maximum possible value amax and then back to zero. Under
the assumption of se > s0 four possible situations have to be considered. The first
case assumes that the maximum velocity is reached vlim = vmax and a constant
velocity segment exists. In this case it is necessary to check if amax is reached. If
this is the case, vmax · jmax ≥ a2

max, the periods Tj and Ta are given by

Tj = amax

jmax
(5.41)

Ta = Tj + vmax

amax
. (5.42)

If the maximum acceleration amax is not reached vmax · jmax < a2
max, the periods

Tj and Ta are

Tj =
√
vmax

jmax
(5.43)

Ta = 2Tj. (5.44)

52 5.3 Trajectory Generation

Then, the duration of the constant velocity phase is given by

Tv = se − s0

vmax
− Ta. (5.45)

For the period with constant velocity Tv > 0 the maximum velocity is reached
vlim = vmax, otherwise the case vlim < vmax needs to be considered and the dura-
tion becomes Tv = 0. Again, it is necessary to check if the maximum acceleration
amax is reached. For (se − s0) ≥ 2a

3
max
j2

max
, Tj and Ta are obtained by

Tj = amax

jmax
(5.46)

Ta = Tj
2 +

√√√√(Tj
2

)2
+ se − s0

amax
. (5.47)

In case of (se − s0) < 2a
3
max
j2

max
, Tj and Ta are given by

Tj = 3

√
se − s0

2jmax
(5.48)

Ta = 2Tj. (5.49)

Maximum Velocity Phase t ∈ [Ta, Ta + Tv]

The maximum velocity phase is present only for a constant velocity period Tv >
0. Then the duration Tv is computed by Eq. (5.45) and the robot moves with
the limited velocity being equal to the maximum velocity vlim = vmax. If the
maximum velocity is not reached, Tv = 0 and the velocity profile takes a similar
shape to Fig. 5.2, with vlim being the highest velocity value.

Deceleration Phase t ∈ [Ta + Tv, T]

Because of the previously introduced constraints of zero initial and final velocity
and the symmetric limits the second s-profile during deceleration phase takes
the same shape as the s-profile during the acceleration process. This results in
Td = Ta.

5 Implementation & Setup 53

Path Function

Finally, s(t) and its derivatives can be constructed as piece-wise functions. With
the determined time segments the maximum and minimum accelerations and
maximum velocity (for the case of vlim < vmax) can be calculated with

alim,a = jmaxTj = −alim,d (5.50)
vlim = (Ta − Tj) alim (5.51)

Then the parameter s(t) is defined as

s(t) =

s0 + v0t+ jmax
t3

6 for t ∈ [0, Tj]
s0 + v0t+ alim,a

6 Tβ for t ∈ [Tj, Ta − Tj]
s0 + vlim0

Ta

2 − vlimTα − jmin
T 3

α

6 for t ∈ [Ta − Tj, Ta]
s0 + −vlimT1 (vlim + v0) Ta

2 for t ∈ [Ta, Ta + Tv]
se − vlim1

Td

2 + vlimTγ − jmax
T 3

γ

6 for t ∈ [T − Td, T − Td + Tj]
se − vlim1

Td

2 + vlimTγ + alim,d

6 Tδ for t ∈ [T − Td − Tj, T − Tj]
se + v1 (T − t) − jmax

(T−t)3

6 for t ∈ [T − Tj, T]

. (5.52)

with

Tα = Ta − t (5.53)
Tβ = 3t2 − 3Tjt+ T 2

j (5.54)
Tγ = t− T + Td (5.55)
Tδ = 3t2 − 3Tjt+ T 2

j (5.56)
vlim0 = vlim + v0 (5.57)
vlim1 = vlim + v1 (5.58)

Here, the function for the path s(t) is provided only. The remaining functions
for v(t), a(t) and j(t) can be found in [Zelinsky09].

5.3.4 Shifting Trajectories

In order to analyze the soft robot’s capability of following chosen trajectories,
it is favorable to be able to generate trajectories with an offset towards the soft
robot’s center, or, in case of the triangular trajectory, rotate the overall trajectory
around the robot’s longitudinal axis. For this purpose, each of the functions f(s)

54 5.4 The Real Soft Robot

describing the trajectory can be multiplied by a rotation matrix Rψ and shifted
in the x-y plane by an adding an offset poff

f̄(s) = poff + Rψf(s). (5.59)

5.4 The Real Soft Robot

The soft flexible rod is the main body of the overall system. It has been manu-
factured by molding HT 45-silicone into beforehand 3D-printed molds. To enable
bending ability, the rod possesses a caterpillar-like shape, as seen in Fig. 5.4

The convexly shaped bulges build the mass elements, while the concave formed
gaps sustain defined bending of the rod. A total of six bolt holes are integrated
into each of the mass elements, which allow the guidance of cable for actuation.
As described in Sect. 3.4, three cables are used to control the robot in this work.
Additional three cables can be considered to allow more complex shapes. The
cables have to be attached to the robots tip, which in this work is a 3D-printed
cube, see Sect. 5.6. The flexible rod itself is placed into a 3D-printed socket,
which is fixed onto a ground plate, where the lose cable ends are guided through
in order to be pulled by a suitable actuation choice.
Measured sizes such as lengths and masses as well as precalculated quantities
are given Tab. 5.1. All of these values can be determined through calculation
or precise measurement to sufficient accuracy and are independent of any other
quantities. For example, the Young’s modulus E can be approximated by

E = 0.0981(56 + 7.62336 ·H)
0.137505(254 − 2.54 ·H) = 2.04 MPA (5.60)

according to [Gent58] for small non-linear deformation. Here, H = 45 ShA rep-
resents the Shore-hardness of the HT 45-silicone.

5.5 Actuation System

As previously mentioned, the softrobot is actuated by attached wires, whose loose
ends stick out of the socket. Those ends are wrapped around 3D-printed reels,
which in turn are mounted on small Hitec HS311 motors. The Hitec HS311
motors are limited in their actuation power resulting in a limited diameter for
the reels. Additionally, the motors do not allow continuous rotation or idle and
instead a rotation range of 180◦ is possible. To enable sufficient bending for

5 Implementation & Setup 55

Figure 5.4: The complete robot system, with the soft robot and Apriltags-cube
in the middle, camera at the top and motors for actuation mounted
around.

56 5.6 Tracking Setup

Table 5.1: Measures held constant for any segment realization.

Quantity Symbol Value Unit
segment radius r 15 [mm]
bolt hole radius rholes 12.5 [mm]
bolt hole length lholes 14 [mm]
Young’s modulus E 2.04 [MPa]
Second moment of inertia Iloc,xx 3.976×10−8 [kgm2]
reel diameter dreel 46 [mm]
Apriltags cube size - 0.03 [mm]
Apriltags cube mass - 0.0172 [kg]

studying the robot’s dynamic behavior, the reels should possess a sufficiently
large diameter on the one hand, but are limited in size due to the motors limited
actuation power. Therefore, a fitting diameter was determined, listed with the
other dimensions in table Tab. 5.1.
The motors are further connected to a Arduino Nano-board, that serves as an
interface between the motors and a connected computer. The connected computer
allows fast computation power to solve the equations of motion, if desirable even
in real-time. However, in this work the inputs are precalculated for simplicity.
Then pulse-width modulation (PMW) is used to control the motors to rotate
about the calculated angles.

5.6 Tracking Setup

To validate the soft robot’s ability to follow a desired trajectory in space a webcam
is placed right above the robot’s tip. The tracking is accomplished by gluing
pictures of Apriltags to the sides of the tip’s cube, which are recognized by
the camera system. The Apriltags resemble simplified QR-codes, which are
a common and popular method for visual tracking in research development, as
conventional camera systems are capable of detecting the tags [Olson11]. For
calibration purposes, additional Apriltags are positioned on the ground plate
of the physical system. These are necessary to determine the position of the
camera in space. Together with the OpenCV library the spacial position of the
Apriltags can be measured and the cube’s center position can be calculated
in the 2D projection camera frame [Itseez15]. This accomplishes validation and
evaluation of the model as well as tuning of uncertain parameters of the system.

Chapter 6

Experimental Results

This chapter focuses on experimental results with the real soft robot. The first
part of this chapter is dedicated to identification of unknown parameters and
their influence on the robots capability of reaching a desired point in the task
space. Sect. 6.1 presents the according parameters and introduces different tun-
ing strategies to determine appropriate values. The second part of this chapter
then studies trajectory following under different system settings. The desired
trajectories and according system variables influencing the soft robots dynamic
behavior are examined in Sect. 6.2.

6.1 Parameter Identification

All parameters used in modeling soft robot are either determined by measure-
ments, computation, or can be chosen by the user. Those quantities, which
remain constant and do not depend on a specific use case, are listed in Tab. 5.1.
Parameters, which are dependent on the number of chosen segments for the PCC
method, are displayed in Tab. 6.1. It should be noted, that for the last segment
the additional mass of the Apriltags-cube is added on top. The weight of the
cube is given in Tab. 5.1.

Table 6.1: Parameter dependent on the number of segments N .

Quantity Symbol Value
(N = 1)

Value
(N = 3)

Value
(N = 6)

Unit

segment length Li 190 60 30 [mm]
segment mass mi 0.11693 0.03648 0.01824 [kg]

58 6.1 Parameter Identification

User-chosen inputs include all parameters, which are dependent on the de-
sired use case. These include all quantities that describe the trajectory or
the dynamic behavior of the soft robot. The values of these parameters
can be freely selected within certain limits. For example, the robot can not
follow a trajectory that is out of its reach or move with any arbitrary speed.
These parameters will be examined further in Sect. 6.2, when their influence
on following a desired trajectory is studied. The parameters are listed in Tab. 6.6.

Finally, there are parameters, which are unknown and need to be identified.
These parameters are either unmeasureable or very sensitive to inaccuracies in
manufacturing or/and montage. In this work, these parameters are related to
the actuation input, denoted by the change in cable lengths ∆lF and ∆lK . As
already explained in Sect. 3.4, a virtual linear spring with stiffness coefficient cq is
modeled to take the elongation of each actuation cable into account. A value for
each cq can be obtained through appropriate experiments prior to deployment
of the system, but any manufacturing and montage inaccuracies are neglected
then. Similar to each change in cable length ∆lF,q, every ∆lK,q is affected by the
system defects and inaccuracy in modeling, which is why another parameter bq is
introduced to take them into account. All together the parameterized total cable
length input to the system is given by

∆lq = Fcab,q

cq
+ bq∆lK,q. (6.1)

With the unknown parameters introduced, the question arises if they are inde-
pendent of any other quantities and how to find an appropriate representation.
In the most simple case, both parameters cq and bq are independent of any other
parameter or quantity, which would result in constant factors for all 6 parame-
ters. If this is not the case, their values need to be represented by an appropriate
function, which takes the dependent quantity into account.

6.1.1 Impact of the Coefficients ∆lF,q and ∆lK,q

Before tuning the parameters cq and bq, their impact on the system has to be
examined. To later determine appropriate values for following desired trajectories
it is essential to understand how their choice will influence the outcome. Because
of that, first both factors will be studied individually on a circular trajectory with
rc = 5 cm, to obtain a better understanding of their impact. The time profile is
chosen as defined in Eq. (5.37). Further properties of the chosen trajectory are
given in Tab. 6.2.

6 Experimental Results 59

Table 6.2: Trajectories for parameter identification.

Shape Size Duration (total) Duration (initial) Num. of laps
- rc [cm] tdur [s] tinit [s] nlap

Circle 2 20 3 1
Circle 3 20 3 1
Circle 4 20 3 1
Circle 5 20 3 1
Circle 6 20 3 1
Circle 8 20 3 1
Circle 10 20 3 1
Circle 12 20 3 1

Impact of Stiffness Coefficient cq

For determining the impact of the stiffness cq on the outcome, only the force
input will be considered, by setting

bq = 0 (6.2)

for all actuators q = 1 . . . 3. The resulting effects are shown Fig. 6.1 with the
according stiffness cq of the virtual spring given in the first column of Tab. 6.3.
It shows the measured tip position zmeas in blue, together with the calculated
tip position zcalc in green, obtained by evaluating Eq. (3.63), and the desired
trajectory z̃ in black. Note, that the calculated tip positions are very accurate
and therefore conceal the desired trajectory. With only force actuation the robot
approximates the circular trajectory by a hexagonal. This is due to the actuation
design described in Sect. 3.4. Only two motors are pulling the robot at the
same time while the third motor is resting. A constant load is acting on the
respective cable while the robot tries to bend away from the jammed motor.
Consequently, the robot is not able to move on a circular path. This is where
additional actuation with ∆lK,q will help the robot.

Impact of Kinematic Cable Length ∆lK,q

The addition of the kinematic cable length ∆lK,q allows the robot to accomplish
circular motion in the x-y plane. The non-actuating motor then doesn’t rest,
but instead moves along and does not constrain the robot in its motion. If only
the length ∆lK,q is considered for actuation, the robot is able to perform circular
motion, however, the elongation of the cables during calculation is not considered,
which may have large influence on the performance of the system. In Fig. 6.2,

60 6.1 Parameter Identification

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated
Measured

Figure 6.1: Recorded Trajectory (blue) when only coefficient ∆lF,q is used as
input with desired trajectory (green). The orange squares represent
the motors.

only the change in length ∆lK,q was utilized for following a circular trajectory
with rc = 0.05m. The values for the parameters bq and cq are listed in the
second column of Tab. 6.3. Note, that all parameters cq for q = 1 . . . 3 have very
large values. The round shape is apparent but overshoots and offsets are clearly
noticeable in the driven path. For example, on the left side the robot exceeds
the desired trajectory. At some points the robot does not manage to stay on the
trajectory and cuts short. A larger parameter bq would increase the pulling of
the active motors, but at the same time loosen further when being not active.
Then less power is required by the active motors to pull the robot again. This is
where additional actuation with the length ∆lF,q will be beneficial, as it allows
the motor to pull stronger when actuating and still loosen for the same amount
when not active.

6 Experimental Results 61

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated
Measured

Figure 6.2: Recorded Trajectory when only coefficient ∆lK,q is used as input.

Table 6.3: Tuned input parameters for radius rc = 5 cm.

Parameter Impact of cq Impact of bq Approach 1
c1 in N

m 400 2×105 1350
c2 in N

m 350 2×105 1100
c3 in N

m 500 2×105 1050
b1 0 1.7 1.05
b2 0 1.4 1.15
b3 0 1.3 1.2

62 6.1 Parameter Identification

6.1.2 Tuning of the Parameters cq and bq

With the resulting effects of the coefficients ∆lF,q and ∆lK,q illustrated, the pro-
portion of both during actuation needs to be determined. This is achieved by
finding appropriate parameters cq and bq, which will force the robot to follow the
desired trajectory. Because of the possible dependency on other parameters and
system settings, a fitting representation needs to be determined. For this purpose
three strategies are considered:

• constant values for all parameters,

• scaling of the parameters by considering the distance to the origin,

• identifying appropriate values for certain distances and designing a function
by curve fitting.

Approach 1: Constant Parameters

The most simple approach is given by modeling both parameters as constant
factors, which reinforce or reduce the influence of the coefficients ∆lF,q and
∆lK,q. All parameters are tuned until the robot manages to approximate the
circular movement and are listed in Tab. 6.3.

The first trajectory of circular shape with radius rc = 5 cm, given in Tab. 6.2, is
considered. Fig. 6.3 shows the result after the parameters were tuned to follow
the desired trajectory. A series of 10 experiments was taken and the result with
the lowest average error in distance

nbest = arg min 1
T

T∑
t=0

‖z̃t − zmeas
t ‖ (6.3)

was chosen. Here, t marks the time where the measurement zmeas
t was taken. The

corresponding desired position z̃t is obtained by linear interpolation. It should be
noted that measurements taken for the parameter identification include a time
delay, which stays consistent over a series of measurements. The delay differs
only minimally between different trajectories but has been eliminated. The
reason for this delay in general originates from the visual measurements, as the
pose estimation and transformations for tracking the center of the Apriltags
cube was performed in real-time. During the experiments on dynamic behavior
only the Apriltags themselves were tracked in real-time, while the computation
of the cube’s center is performed after the run finishes. Thus, the time delay

6 Experimental Results 63

becomes smaller in later experiments, but still remains.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated
Measured

Figure 6.3: Recorded Trajectory for a circle of radius rc = 5 cm with parameters
for approach 1 given in Tab. 6.3.

It is clearly noticeable that the robot is capable of following the circular
trajectory to a certain extend, but deviates from the desired path at a few spots.
Those deviations occur either consistently or every once in a while. Permanent
offsets arise due to not ideally tuned parameters. In contrast, varying devi-
ations appear due to minor noise in each run, for example due to random friction.

The high variation in motion makes the tuning challenging, as often slight
overshoots and offsets arise during motion. Further, all 6 parameters do not
only affect the local area around the according motor, but can influence the
behavior of the robot everywhere. For example, a constant overshoot appears at
the left side, between motor 2 and 3. Here either the parameters c2 and c3 can
be increased, b2 and b3 decreased or b1 reduced only. Changing the parameters
c1 and c3 results in less strain induced by the motors 2 and 3. However, in the

64 6.1 Parameter Identification

area close to motor 2, where the robot cuts short, the deviation would increase
further. Decreasing the parameters b2 and b3 causes less tension by the motors
2 and 3, too. But this change effects the performance on the opposite site, too,
where the robot is predominantly actuated by motor 1. The motors 2 and 3
restrain the motion and the parameter c1 has to be decreased further because
otherwise the robot will fail to reach the desired radius. Alternatively, lowering
the parameter b1 only will give the robot less freedom in its movement, but will
lead to sharper edges and less curvature motion. Additionally, a change of the
parameter b1 will affect the robot’s performance everywhere.

In general, reducing the parameters cq allows the according motor to pull the
robot closer to it, without affecting the non-active actuation area. This results
in sharper edges for the trajectory and a hexagon shape evolves, see Fig. 6.1.
But general constant deviation can be prevented, as the offset around motor 2
in Fig. 6.3. Contrarily, larger parameters cq allow more curvy motion but the
elongation of the cables is considered less, which causes a more deviation over a
greater span, as the offset around motor 2. Larger parameters bq support the
execution of non-linear motion. When a motor is not-active it adapts to the move-
ment forced by the pulling motor(s) by reducing the tension on it’s own cable.
Therefore an increase of bq can reduce the sharp peaks, induced by the coefficient
∆lF,q, but at the same time allows less tension from the non-active motor, which
can lead to more overshoots and offsets everywhere, as seen on the left in Fig. 6.2.

Tuning the parameters cq and bq by hand is challenging because of their con-
trary behavior as both values influence each others impact and because of the
reoccurring minor disruptive factors, such as friction or noise in measurements.
However, as the results in Fig. 6.3 show, it is possible to tune these parameters
to certain extend to let the robot follow a chosen trajectory. With the tuned pa-
rameters present, other circles with larger and smaller radii are considered. The
according trajectories are listed in Tab. 6.2. For each trajectory only the radius
was changed and all of the other parameters are kept the same. Two errors are
defined to compare the results. The maximum and average error over time are
given as

eavg = mean
(

‖z̃t − zmeas
t ‖

rc

)
(6.4)

emax = max
(

‖z̃t − zmeas
t ‖

rc

)
. (6.5)

It is important to note, that both errors are scaled with the radius in order to
ensure a proportionate comparison for the error values. Therefore the errors

6 Experimental Results 65

have no unit. The minimum values of the two errors eavg and emax of a series of
10 measurements are shown in Tab. 6.4.

Table 6.4: Minimum average and maximum error for different circular trajecto-
ries.

rc in m 0.02 0.03 0.04 0.05 0.06 0.08 0.1
eavg 0.4053 0.2385 0.1308 0.1558 0.1525 0.1356 0.1447
emax 0.6767 0.3858 0.3405 0.3237 0.3166 0.299 0.3325

The results show that both errors increase for significant smaller radii, but
remain similar for larger trajectories. Additionally, Fig. 6.4 and Fig. 6.5 show
the according trajectories to the given values in Tab. 6.4.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Position in y [m]

Po
sit

io
n

in
x

[m
]

Desired
Smallest eavg
Smallest emax

Figure 6.4: Recorded trajectory error for a circle of radius rc = 2 cm with the
parameters for approach 1 given in Tab. 6.3.

66 6.1 Parameter Identification

It is clearly visible that the robot does follow the trajectories worse compared to
the circular path with radius rc = 5 cm. For a larger circle, the robot manages
to follow the path approximately, but with a general offset. This is not the case
for a circle with significant smaller radius, where the robot does not reach the
desired path at all. Here, less tension is required for smaller deflections compared
to trajectories, where the robot is bent stronger to reach the desired point in
space. The aforementioned inaccuracies in manufacturing and mounting as well
as the effects of friction between the cables and reels have a greater impact on the
system and elongation of cables are clearly visible. These disturbances have lesser
influence for larger sizes, where the actuation strain has a far stronger impact in
comparison.

In general, the robot’s tip overshoots for circles with a significant larger radius.
Contrarily for trajectories close to the robot’s center, the end-effector does not
reach the desired path and instead lingers around the origin. The results show,
that especially for smaller trajectories the constant parameter approach is not

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in y [m]

Po
sit

io
n

in
x

[m
]

Desired
Smallest eavg
Smallest emax

Figure 6.5: Recorded trajectory errors for a circle of radius rc = 10 cm with
parameters for approach 1 given in Tab. 6.3.

6 Experimental Results 67

sufficient. Likewise, tracking of trajectories with larger size can be improved as
a constant offset is noticeable.

Approach 2: Linear Parameters

The first approach with constant parameters is not sufficient for tracking
trajectories, in particular for paths close to the robot’s center. Alternatively to
the first approach, the parameters can be split into a constant factor multiplied
by the radius of the circular path. Then a parameter is scaled according to the
radius. For any arbitrary trajectory, a function can be defined to represent each
parameter, which takes in the distance between the origin and the current tip
position in the x-y task space and returns the scaled parameter.

The results for constant parameters show that the robot struggles to reach the
trajectory for circles with a radius rc < 5 cm and exceeds for trajectories with a ra-
dius rc > 5 cm. This motivates five ideas for considering the size of the trajectory.

In the previous approach optimal values for the parameters cq and bq for a circular
trajectory with radius rc = 5 cm were found experimentally. These values can be
separated into the product of a constant factor and the radius rc of the desired
circular path. Then the parameter cq is given by

cq = rc · c′

q (6.6)

and the parameter bq by

bq =
b

′
q

rc
. (6.7)

Here, the two values c′
q and b

′
q represent the new constant factors. They are

calculated from the results with a circle of rc = 5 cm. The constant c′
q is given

by rearranging Eq. (6.6) to

c
′

q =
c5
q

0.05 . (6.8)

and the value for the constant b′
q is obtained by rearranging Eq. (6.7) to

b
′

q = b5
q · 0.05. (6.9)

68 6.1 Parameter Identification

The inclusion of rc for scaling the parameters can happen in five different ways.
First, only one of the parameters is scaled by considering only Eq. (6.6) or
Eq. (6.7) for computing the total change in cable length in Eq. (6.1). Second
both parameters are scaled with Eq. (6.6) and Eq. (6.7). Third, if the effects of
scaling for one of the two parameters is way larger than the other, the inverse of
rc can be considered, resulting in scaling according to

cq =
c

′′
q

rc
, (6.10)

c
′′

q = c5
q · 0.05, (6.11)

for the spring stiffness and

bq = b
′′

q · rc, (6.12)

b
′′

q =
b5
q

0.05 , (6.13)

for the kinematic cable length input. The resulting change in cable length is then
given for the five cases as

(a) ∆lq = Fcab,q

rc · c′
q

+ bq∆lK,q, (6.14)

(b) ∆lq = Fcab,q

cq
+
b

′
q

rc
∆lK,q, (6.15)

(c) ∆lq = Fcab,q

rc · c′
q

+
b

′
q

rc
∆lK,q, (6.16)

(d) ∆lq = Fcab,q · rc
c′′
q

+
b

′
q

rc
∆lK,q, (6.17)

(e) ∆lq = Fcab,q

rc · c′
q

+ b
′′

q · rc∆lK,q. (6.18)

The mean and standard deviation of eavg and emax are displayed in Fig. 6.6 and
Fig. 6.7 for all five ideas and approach 1 and the trajectories given in Tab. 6.2.
The results show that in general for smaller radii the errors increase. Case (c)
shows worst results for small radii and (d) for larger radii. The case with the
smallest overall errors is given by case (a), showing that scaling of parameter
cq by considering the radius of the circle rc seems reasonable for larger circles.
Adjusting the parameter bq by the radius purely results in stronger deviation.
The standard deviation is very small for both errors.

6 Experimental Results 69

0.02 0.03 0.05 0.06 0.08 0.1 0.12

0.2

0.4

0.6

0.8

1

1.2

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e a

vg

approach (1)
case (a)
case (b)
case (c)
case (d)
case (e)

Figure 6.6: Mean and standard deviation of eavg for circles of different size.

Approach 3: Function Fitting

The last approach presented in this work will fit a function through the measured
parameters for a handful of chosen circles. As seen for the previous approach
scaling with the radius does not seem to improve the position tracking much. It
could be possible to potentially achieve a radius-scaling function, where larger and
smaller radii are distinguished, but a promising result is uncertain and therefore
will not be examined further. Instead, the idea is introduced to tune individual
parameters for a handful of chosen circles with different radii. Then a polynomial
of optional degree can be derived, which will fit the collected values for each
parameter of a different circle onto a curve. This results in a function of the
current distance between the robot’s desired tip and center

cq = fq(‖z̃t‖) (6.19)
bq = gq(‖z̃t‖). (6.20)

If the 6 functions fq and gq for q = 1 . . . 3 are tuned adequate, the robot will be
able to reach any desired position, which enables tracking of arbitrary trajectories.

70 6.1 Parameter Identification

0.02 0.03 0.05 0.06 0.08 0.1 0.12
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e m

ax

approach (1)
case (a)
case (b)
case (c)
case (d)
case (e)

Figure 6.7: Mean and standard deviation of emax for circles of different size.

However, as already seen in Fig. 6.4, Fig. 6.6 and Fig. 6.7 the errors for trajecto-
ries with smaller radii are larger than for motion with a greater distance to the
origin. Therefore the two functions are determined for larger radii only and this
approach will be used for examining the influence of dynamic properties on tri-
angular trajectories in Sect. 6.2, because for any non-circular trajectory or circle,
whose center point is not located at the origin, ‖z̃‖ 6= rc and therefore the scal-
ing might be insufficient. Additionally, with the function representation specific
parameters for the chosen circles can be tuned and therefore potentially increase
the performance.

For deriving all 6 functions fq and gq with q = 1 . . . 3 circular trajectories are
considered of rc ∈ {8 cm, 10 cm, 12 cm}. For these radii the robot manages to
stay consistently on the desired path for well tuned parameters. The according
tuned parameters are listed in Tab. 6.5.

A polynom of second order is chosen to approximate the parameter functions fq
and gq for q = 1 . . . 3. The resulting polynomials fq are displayed in Fig. 6.8 and
the polynomials gq are visualized in Fig. 6.9.

6 Experimental Results 71

Table 6.5: Tuned parameters for circular paths of different sizes.

Parameter rc = 8 cm rc = 10 cm rc = 12 cm
c1 in N

m 1350 1400 1450
c2 in N

m 1100 1050 1000
c3 in N

m 1050 1300 1600
b1 1.05 1.14 1.27
b2 1.15 1.13 1.15
b3 1.2 1.25 1.3

0.08 0.09 0.1 0.11 0.12

1,000

1,100

1,200

1,300

1,400

1,500

1,600

Distance to origin [m]

Sp
rin

g
St

iff
ne

ss
c q

[N m

]

c2
c3
c4

Figure 6.8: Parameter functions for cq with q = 1 . . . 3.

72 6.2 Trajectory Following

0.08 0.09 0.1 0.11 0.12

1.05

1.1

1.15

1.2

1.25

1.3

Distance to origin [m]

K
in

em
at

ic
Fa

ct
or

b q

b2
b3
b4

Figure 6.9: Parameter functions for bq with q = 1 . . . 3.

6.2 Trajectory Following

The second half of this chapter is dedicated to examination of the influence of
user-chosen parameters on the robots dynamic behavior. Two types of trajecto-
ries are considered for this analysis, namely circular and triangular paths. The
third approach to determine the parameters is applied to triangular trajectories
in Sect. 6.2.1, while for simple circlular paths parameters are tuned for the corre-
sponding examined radii rc. Three parameters and their influence on trajectory
following are studied, namely the step size ∆t of the implicit Euler algorithm,
see Eq. (4.27), for solving the inverse model Eq. (4.25), the path velocity of the
desired trajectory ṽ and choice of number of segments N for modeling the robot.

The studied settings for all three parameters ∆t, vlim and N are given in Tab. 6.6.
Note, that the step size is equal to the transmission frequency for sending inputs
to the motors.

Table 6.6: Values for user-chosen variables.

∆t in s 0.1 0.02 0.01
vlim in m

s
0.05 0.075 0.1

N 1 3 6

6 Experimental Results 73

Circular Trajectory

The first parameter, which can effect the dynamic behavior of the robot, is the
step size ∆t for solving the governing DAE equations Eq. (4.25) and therefore
rate of inputs for the actuation. As already explained in Sect. 5.2, in some cases
the solving algorithm struggles to find a solution. This usually happens for
specific combination of desired velocities vlim and step sizes ∆t. But by slight
adjustment of the initial deflection direction the solver was able to find solutions
and integrate Eq. (4.27).

The settings for the circular trajectories, used to study dynamic behavior,
are listed in Tab. 6.7. The smallest circle is of size rc = 4 cm because for
smaller circles the robot does not manage to consistently follow the circle and
disturbances would have greater impact, as explained in Sect. 6.1.2. The largest
radius of rc = 12 cm was chosen because it marks the task space limit. Lastly,
the circle of size rc = 8 cm serves as an intermediate.

Table 6.7: Circular Trajectories for trajectory following.

Shape Size max. velocity Duration (ini-
tial)

Number of
laps

- rc [cm] vmax [m
s] tinit [s] nlap

Circle 4 0.05 3 4
Circle 4 0.075 3 4
Circle 4 0.1 3 4
Circle 8 0.05 3 4
Circle 8 0.075 3 4
Circle 8 0.1 3 4
Circle 12 0.05 3 4
Circle 12 0.075 3 4
Circle 12 0.1 3 4

Note, that the maximum velocities vmax of the constant velocity profile are equal
to the desired velocities listed in Tab. 6.6. The maximum acceleration amax
and maximum jerk jmax are chosen freely with reasonable values. But as both
values are not examined in this work, their value has to be chosen to generate
a desired trajectory with a constant velocity profile, as explained in Sect. 5.3.3.
Their values are chosen to be amax = 0.1 m

s2 and jmax = 0.1 m
s3 . Note, that for the

dynamic experiments a series of 2 experiments was taken for each configuration.

74 6.2 Trajectory Following

The results show that for faster path velocities vlim both errors increase, see
Fig. 6.10-Fig. 6.12. For vlim = 0.05 m

s the mean of the averaged, normed tip
error shows small deviation for different step size ∆t, depicted on the left side in
Fig. 6.10. In this case the robot follows the circular trajectory rather slow and
dynamic effects are small. Similarly, the mean of the maximum normed tip error
deviates on a small scale for different ∆t, seen on the right in Fig. 6.10. There
are only minor changes noticeable for different ∆t in terms of tip accuracy. The
larger standard deviation of emax for ∆t = 100 s is traced back on the small
number of experiments for each series.

In comparison, vlim = 0.075 m
s shows larger error values for each radius, see

Fig. 6.11. Especially for a radius of rc = 4 cm the errors are much higher
compared to the previous case. Again, the step size ∆t has only minor effect
on the average tip error eavg. Contrarily, the maximum tip error emax is more
impacted by the step size ∆t. However, the deviation is still very small for
different step sizes ∆t.

Last, for vlim = 0.1 m
s the errors increase again, see Fig. 6.12. The average error

eavg does increase only little compared to the maximum error emax. The step
size doesn’t seem to have large effect. Only for a very large radius rc the average

0.04 0.08 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e a

vg ∆t = 10 s ∆t = 50 s ∆t = 100 s

0.04 0.08 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e m

ax

Figure 6.10: Mean and standard deviation of eavg and emax for vlim = 0.05 m
s and

different step sizes ∆t.

6 Experimental Results 75

0.04 0.08 0.12
0

0.05

0.1

0.15

0.2

0.25

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e a

vg ∆t = 10 s
∆t = 50 s
∆t = 100 s

0.04 0.08 0.12
0

0.2

0.4

0.6

0.8

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e m

ax

Figure 6.11: Mean and standard deviation of eavg and emax for vlim = 0.075 m
s and

different step sizes ∆t.

tip error eavg is higher for ∆t = 100 s. However, again this can be traced back
on the small amount of experiments.

The error plots show a commonality. In most cases, the errors for a trajectory
with rc = 8 cm have the lowest values. The reason for this is that a trajectory
with rc = 4 cm is closer to the origin, where the disturbance variables have a
greater influence, as explained in Sect. 6.1.2. For a trajectory with rc = 12 cm
the robot reaches its work-space limit.

The recorded trajectory for rc = 4 cm is shown in Fig. 6.13. After the ac-
celeration phase the robot moves with a constant speed of vlim = 0.075 m

s .
The step size is ∆t = 0.02 s and the robot rotates nlap = 4 times around its
center axis. Only a limited amount of measurements is available. This is
due to the rather fast speed of vlim = 0.075 m

s . The camera used for tracking
struggles to detect the Apriltags, which leads to the large gaps in between the
measurements. At these positions the Apriltags cube is rotated by unfavorable
angles, where together with the higher speed the camera struggles to detect
the blurry Apriltags. The initial deflection shows the opposite effect, when
the cube moves out of the straight configuration. In this case, the cube was
rotating only around one axis and therefore tracking more successful. However,
the measurements still show that the robot is capable of following the circular

76 6.2 Trajectory Following

0.04 0.08 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e a

vg ∆t = 10 s
∆t = 50 s
∆t = 100 s

0.04 0.08 0.12
0

0.2

0.4

0.6

0.8

1

1.2

Circle radius rc [m]

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
e m

ax

Figure 6.12: Mean and standard deviation of eavg and emax for vlim = 0.1 m
s and

different step sizes ∆t.

trajectory in general.

In Fig. 6.14 the case with vlim = 0.1 m
s and ∆t = 0.01 s for a trajectory of size

rc = 8 cm is visualized. Again, the robot takes nlap = 4 laps and follows a
constant velocity profile after initial acceleration. At an even higher speed the
camera struggles further to detect the cube. The gaps are larger compared to
Fig. 6.13, but the measurement accumulations are clearly more dense because of
the higher input transmission frequency (smaller ∆t = 0.01 s). Again, even for a
considerably high speed vlim = 0.1 m

s the robot still manages to follow the desired
trajectory approximately.

At last, Fig. 6.15 shows the largest trajectory of rc = 12 cm. After initial
acceleration, the desired constant speed vlim = 0.05 m

s is slower compared to
the previous examples. The step size is ∆t = 0.1 s and again the robot takes
nlap = 4 laps. The plot shows how the robot accurately tracks the desired circle.
Especially when motor 1 and 3 actuate mainly the robot manages to follow the
desired path very accurately in all 4 laps. Only in the lower left corner, where
motor 2 is the main actuator, the robot struggles to stay on track. In one of
the four lap, the robot cuts short strongly, compared to the other laps. This is
due to the limiting task space of the robot. While the robot would be able to
reach even wider distances in theory, at a size of rc = 12 cm motor 2 (lower left)

6 Experimental Results 77

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated
Measured

Figure 6.13: Trajectory for rc = 4 cm with ∆t = 0.02 s and ṽ = 0.075 m
s , measured

(blue), calculated (green) and desired (black).

struggles to apply the required strain in order to bend the robot. The reason,
why only the motor 2 reaches its limit, is due to initial strain on the cables
for the state of rest. During mounting it is necessary to ensure a small load is
induced on the robot by each cable. If the cables are lose, when the robot rests,
elongation will have a larger effect at the start and initial load of smaller values
gets lost. In that case, the robot performs even more worse on trajectories of
smaller size

The limiting case is noticeable even stronger when looking at the tracked x-
positions in Fig. 6.16 and y-positions in Fig. 6.17 over time. The largest short
cut happens around t = 52 s, as seen in Fig. 6.15. Accordingly, at t = 52 s the
robot falls short in negative y-direction, as can be seen in Fig. 6.17, where the
tracked y position doesn’t reach the maximum of the desired track.

Further the effects of the step size ∆t on the velocity vlim can be studied. The
considered step sizes ∆t are given in Tab. 6.6. A circle of size rc = 8 cm is chosen,
as for most cases it shows the smallest errors for variation of the step size ∆t and
the velocity vlim. The positional error is defined as

78 6.2 Trajectory Following

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated
Measured

Figure 6.14: Trajectory for rc = 8 cm with ∆t = 0.01 s and vlim = 0.1 m
s , measured

(blue), calculated (green) and desired (black).

epos = ‖z̃t − zmeas‖. (6.21)

The error is visualized in Fig. 6.18, once containing the aforementioned time
delay, depicted in red, and once more delay-clean, colored in purple. The time
delay is removed by shifting the measured data in order to match with the
desired path approximately. As seen, the time delay has a significant effect on
the positional error.

The velocity, obtained by time integration with measured and calculated time
points, is depicted in Fig. 6.22 for ∆t = 0.01 s, in Fig. 6.21 for ∆t = 0.05 s and
in for ∆t = 0.1 s. The robot moves with the desired velocity at the majority of
time, but larger peaks appear in the tracked velocity. These can be traced back to
jumps in the measured positions and numerical noise. Already minor offsets will
lead to jumps in the velocity function. For example, the largest peak in Fig. 6.19
is computed with the measured time difference ∆tmeas = 16.7207 s − 16.6372 s

6 Experimental Results 79

−0.2−0.15−0.1−0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

10

20

30

40

50

60

Figure 6.15: Trajectory for rc = 12 cm with ∆t = 0.1 s and vlim = 0.05 m
s , mea-

sured (blue), calculated (green) and desired (black).

vmax =

√
(0.0036 m − 0.0139 m)2 + (−0.0553 m + 0.0799 m)2

∆tmeas
= 0.319 m

s . (6.22)

Vibrations and measurement noise of the robot lead to jumps of the measured
x and y-positions of the robot’s tip. The oscillating behavior is natural for
the silicone material, the robot is made of. Measurement noise occur due to
Apriltags not being detected or an inaccurate, and sometimes even incorrect,
rotation is computed by the detection algorithm. Already rather smaller jumps
of 1 cm ∼ 2 cm lead to strong peaks in the velocity profile. Therefore, these
peaks are filtered and not included in the visualization Fig. 6.22 - Fig. 6.19. But
it can be seen that the step size ∆t does not influence the velocity of the robot
significantly.

In terms of the desired path velocity vlim, Fig. 6.23 and Fig. 6.24 show tra-
jectories with vlim = 0.075 m

s and vlim = 0.1 m
s . Because the camera detects

less Apriltags for higher velocities, the step size is kept high at ∆t = 0.01 s.
The robot does manage to keep the desired velocity more accurate with less

80 6.2 Trajectory Following

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

0.1

Time t [s]

Po
sit

io
n

in
x

[m
].

Desired
Calculated

Figure 6.16: Position in x over time for rc = 12 cm with ∆t = 0.1 s and vlim =
0.05 m

s , measured (color gradient), calculated (green) and desired
(black).

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

0.1

Time t [s]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

Figure 6.17: Position in y over time for rc = 12 cm with ∆t = 0.1 s and vlim =
0.05 m

s , measured (color gradient), calculated (green) and desired
(black).

6 Experimental Results 81

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

Time t [s]

Er
ro

r
in

[m
]

With delay
Without delay

Figure 6.18: Positional error over time for rc = 8 cm with ∆t = 0.01 s and vlim =
0.05 m

s , with time delay (red), without (purple)

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]

Desired
Calculated

Figure 6.19: Velocity over time for rc = 8 cm with ∆t = 0.1 s and vlim = 0.05 m
s ,

measured (color gradient), calculated (green) and desired (black).

82 6.2 Trajectory Following

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]

Desired
Calculated

Figure 6.20: Velocity over time for rc = 8 cm with ∆t = 0.1 s and vlim = 0.05 m
s ,

measured (color gradient), calculated (green) and desired (black).

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]

Desired
Calculated

Figure 6.21: Velocity over time for rc = 8 cm with ∆t = 0.05 s and vlim = 0.05 m
s ,

measured (color gradient), calculated (green) and desired (black).

6 Experimental Results 83

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]
Desired
Calculated

Figure 6.22: Velocity over time for rc = 8 cm with ∆t = 0.01 s and vlim = 0.05 m
s ,

measured (color gradient), calculated (green) and desired (black).

stronger peaks, especially for vlim = 0.1 m
s . However this is due to the overall

higher velocity and inaccuracies of the position measurement do not stand out
as significantly as for lower velocities.

Finally, the analysis is completed by looking at the number of segments N . The
considered values for N are listed in Tab. 6.6. A trajectory with constant velocity
profile is considered with vlim = 0.1 m

s to examine how the number of segments
affect the results for fast motion, together with a small ∆t = 0.01 s. The tracked
velocities are depicted in Fig. 6.25, Fig. 6.26 and Fig. 6.27 for N = 1, N =
3 and N = 6, respectively. It is clearly observable how the tracking of the
desired trajectory becomes worse for a smaller number of segments to model
the softrobot. Therefore, for path tracking with high velocities an appropriate
number of segments is favorable to obtain accurate trajectory tracking.

At last, Fig. 6.28 shows the motor angles over time. The green graph considers
the motor angle αq at time t and the blue graph gives information about the
influence of the change in length of the virtual ∆lF,q in the motor αq. Here
the oscillation for following a circle and actuation delay between the motors are
clearly visible.

84 6.2 Trajectory Following

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]

Desired
Calculated

Figure 6.23: Velocity over time for rc = 8 cm with ∆t = 0.01 s and vlim = 0.075 m
s ,

measured (color gradient), calculated (green) and desired (black).

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

Time t [s]

Pa
th

ve
lo

ci
ty

v
[m s

]

Desired
Calculated

Figure 6.24: Velocity over time for rc = 8 cm with ∆t = 0.01 s and vlim = 0.1 m
s ,

measured (color gradient), calculated (green) and desired (black).

6 Experimental Results 85

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

5

10

15

20

25

Figure 6.25: Circular trajectory of rc = 8 cm for N = 1 with ∆t = 0.01 s and
vlim = 0.1 m

s , measured (color gradient), calculated (green) and de-
sired (black).

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

5

10

15

20

25

Figure 6.26: Circular trajectory of rc = 8 cm for N = 3 with ∆t = 0.01 s and
vlim = 0.1 m

s , measured (color gradient), calculated (green) and de-
sired (black).

86 6.2 Trajectory Following

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

5

10

15

20

25

Figure 6.27: Circular trajectory of rc = 8 cm for N = 6 with ∆t = 0.01 s and
vlim = 0.1 m

s , measured (color gradient), calculated (green) and de-
sired (black).

6.2.1 Triangular Trajectory

The second trajectory studied in this work is a triangular path around the
robot’s middle axis, derived in Sect. 5.3.1. This trajectory is chosen because
it contains straight parts in the task space as well as sharper edges. The
effects of centrifugal forces do not help the robot in this case for tracking
the shape of the path. Additionally, the influence of the motors positioning
around the robot can be examined by placing the corners of the triangle path
right at the motors or in between. Further, the corners can be designed to be
very sharp to study the robots tracking of sharp turns, especially at higher speed.

For representation of the input parameters cq and bq the third approach is
considered, where polynomials are derived to allow adjustable parameters. In
that regard, each point on the triangular trajectory should preferably have a
minimum distance of 8 cm to the robot’s center and not lay further than 12 cm
away from the center. For a triangle with rounder corners this can be guaranteed
for almost each point. However, in case of very sharp corners this requirement
can not be met.

6 Experimental Results 87

0 2 4 6 8 10 12 14 16 18 20 22 24 26

−0.2

0

0.2

0.4
A

ng
le

at
m

ot
or

1
[ra

d]
.

Angle α1
Influence of ∆lF,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26
−0.4

−0.2

0

0.2

0.4

0.6

A
ng

le
at

m
ot

or
2

[ra
d]

Angle α2
Influence of ∆lF,2

0 2 4 6 8 10 12 14 16 18 20 22 24 26

−0.2

0

0.2

0.4

Time t [s].

A
ng

le
at

m
ot

or
3

[ra
d]

Angle α3
Influence of ∆lF,3

Figure 6.28: Motor angles αq for q = 1 . . . 3 over time t for a circle of size rc = 8 cm
with ∆t = 0.01 s and vlim = 0.1 m

s .

88 6.2 Trajectory Following

Again, the step size ∆t and velocity vlim are examined with ∆t ∈ {0.01 s, 0.1 s}
and vlim ∈ {0.05 m

s , 0.1
m
s }. The chosen number of segments for modeling the

robot is N = 6, as a smaller amount showed significantly poorer results. Three
different trajectories are considered, a first one with rounded corners, where
almost all points have a distance of at least 8 cm and at most 12 cm to the origin.
Only the corners exceed this range slightly. The second one does get closer to
the robots origin but possesses sharp edges. Lastly, the sharp triangle is rotated
by 60◦, moving the triangle’s corners between two motors.

First, the triangle with round corners is considered. The tracked trajectory
is visualized in Fig. 6.29 and Fig. 6.30 for ∆t = 0.1 s with vlim = 0.05 m

s and
∆t = 0.01 s and vlim = 0.1 m

s , respectively. The results show that the softrobot is
capable of following the triangular trajectory accurately. Especially between the
motors 1 and 3 the measurements show that the tip is very close to the desired
positions.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

10

20

30

40

50

60

Figure 6.29: Triangular trajectory with round corners for ∆t = 0.1 s and vlim =
0.05 m

s , measured (color gradient), calculated (green) and desired
(black).

6 Experimental Results 89

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

5

10

15

20

25

30

Figure 6.30: Triangular trajectory with round corners for ∆t = 0.01 s and
vlim = 0.1 m

s , measured (color gradient), calculated (green) and de-
sired (black).

While both the limiting desired velocity vlim and step size ∆t do not seem to
have any significant impact on the tracking results, it is worth noting that no
short cuts are visible at motor 2, contrarily to the circular trajectory. Even
though the desired positions of the corner section lay closer to the motor than
compared to the circular case, the robot manages to reach the desired positions.
This is due to the different actuation input over time. During the circular case
a larger constant load is induced by the motors 1 and 3 to force the robot
to stay on the circular path. However, for the corners of the triangular path
the main actuator is motor 2 and smaller loads are induced by the other two
motors, compared to the circular path. In particular for a higher velocity the
robot struggles less to perform at the corner close to motor 2, since the inertia
supports the motor more intense compared to slower speed. It is noticeable that
in the case of a smaller desired velocity vlim the robot does not cut short either,
but approximates the corner arc more flatly.

The same effect is noticeable in the opposite way at the corner next to motor
1, where the robot exceeds the desired trajectory. This gap occurs because the

90 6.2 Trajectory Following

robot is initially pulled towards motor 1 to get on track, where the tuning was
very challenging and therefore less accurate values were found. This effect is
also slightly noticeable during the circular trajectory in Fig. 6.14, but is more
distinct for the triangular path due to the corner, where motor 1 is the main
actuator.

In general, the robot manages to follow the straight lines precisely with only
smaller offsets. The round corners are tracked sufficiently, only for the corner at
motor 1 a larger gap appears. To investigate the characteristic behavior at the
corners further, a triangle with more sharp corners is considered. Again, a step
size of ∆t = 0.1 s together with a path velocity of vlim = 0.05 m

s and a step size
of ∆t = 0.01 s in addition to a velocity of vlim = 0.1 m

s are shown in Fig. 6.31 and
Fig. 6.32, respectively.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

10

20

30

40

50

Figure 6.31: Triangular trajectory with sharp corners for ∆t = 0.1 s and vlim =
0.05 m

s , measured (color gradient), calculated (green) and desired
(black).

The results show once more, that both the step size ∆t and the desired velocity
vlim have no significant effect on the robot’s capability on tracking the triangular
trajectory. Again, a general offset is seen for the straight paths in between

6 Experimental Results 91

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

5

10

15

20

25

30

Figure 6.32: Triangular trajectory with sharp corners for ∆t = 0.01 s and vlim =
0.1 m

s , measured (color gradient), calculated (green) and desired
(black).

the motors 1 and 2 and motors 2 and 3. But the robot successfully tracks the
sharp corners. Only close to the second motor the robot fails to follow the
sharp corner. The robot struggles to perform the sharp turn and oscillating
behavior occurs due to motor 2 working at its limit. Close to motor 1 the
robot manages to represent the sharp corner, but again a clear offset is no-
ticeable, which occurs due to the less accurate tuning of the parameters c1 and b1.

Finally, the sharp trajectory is considered again but rotated by 60◦. The corners
are located in between the motors now. All other parameters stay the same.
Again no significant differences occur for different step sizes ∆t and desired
velocities vlim. But the inaccuracies in tuning become more evident. The robot
does not manage to reach the left corner between motor 2 and 3. At the opposite
site the robot struggles with moving on the straight desired path and instead a
small rounding occurs. This can be traced back to the inaccurate identification
of the scaling parameters c1 and b1 once again, where motor 1 is pulling to
strong. Contrarily, it applies too much load on the robot during the non-active

92 6.2 Trajectory Following

time, when the robot is pulled by the other two motors.

At last, the change in cable length at each time step is plotted in Fig. 6.35. The
graph shows how during the initial deflection the motors 1 and 2 pull the robot,
while motor 3 yields to allow bending. Afterwards, motor 1 moves in the opposite
direction, when the robot reaches the first corner of the triangle between motor
2 and 3. Accordingly, motor two pulls stronger again and motor 3 moves in
the opposite direction to bend the robot. Note the time shift of the input at
each motor, first motor 1 moves in negative direction when being the non-active
actuator (4.7 s-7.3 s), afterwards motor 2 does the likewise (7 s-10.5 s), and at last
motor 3, where the robot reaches its starting position again (9 s-10.5 s). At those
times the cable length induced by the virtual spring becomes 0, as the motor is
not active.

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Position in x [m]

Po
sit

io
n

in
y

[m
]

Desired
Calculated

10

20

30

40

50

Figure 6.33: Triangular trajectory with sharp corners for ∆t = 0.1 s and vlim =
0.05 m

s but rotated by 60◦, measured (color gradient), calculated
(green) and desired (black).

6 Experimental Results 93

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Position in x [m]

Po
sit

io
n

in
y

[m
]

5

10

15

20

25

30

Figure 6.34: Triangular trajectory with sharp corners for ∆t = 0.01 s and
vlim = 0.1 m

s but rotated by 60◦, measured (color gradient), cal-
culated (green) and desired (black).

94 6.2 Trajectory Following

0 5 10 15 20 25 30

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

A
ng

le
at

m
ot

or
1

[ra
d]

Angle α1
Influence of ∆lF,1

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

A
ng

le
at

m
ot

or
2

[ra
d]

Angle α2
Influence of ∆lF,2

0 5 10 15 20 25 30

−0.6

−0.4

−0.2

0

0.2

0.4

Time in [s]

A
ng

le
at

m
ot

or
3

[ra
d]

Angle α4
Influence of ∆lF,3

Figure 6.35: Motor angles αq for q = 1 . . . 3 over time t for the trajectory with
sharp corners for ∆t = 0.01 s and vlim = 0.1 m

s but rotated by 60◦.

Chapter 7

Summary and Outlook

In this work, the inverse model for a soft robot under consideration of the system
dynamics is established. Forward kinematics is modeled and the equations of
motion are derived to represent the forward dynamics. The servo-constraints ap-
proach is applied to derive an inverse model and solve the resulting DAE’s. The
inverse model provides a control law for feedforward control of the soft robot. In
terms of modeling, the PCC-approach provides accurate modeling of the kine-
matics, with very small positional errors during slow motion. Furthermore, the
application of the servo-constraints approach successfully solves the inverse prob-
lem, taking the inverse dynamics into account.

Furthermore, a new soft robot was manufactured. In a series of experiments,
unknown parameters of the robotic system are identified and tuned in order to
reach desired positions in space. Different strategies are introduced and studied
to find suitable values for the parameters. Afterwards, trajectory following with
variations of system parameters is evaluated. The effects of these parameters on
the robots performance are examined. For any combination the system remains
stable and the robot is able to follow desired trajectories in space, such as simple
circular paths and more difficult triangular trajectories with sharper edges.
However, the examined strategies of determining the parameters turns out to
be insufficient. Constant values and values scaled by radius show satisfying
results for larger trajectories, but following paths close to the robot’s center is
troublesome.

The experiments validate that trajectory following using the constructed soft
robot is possible. However, inaccuracies during mounting of the system compo-
nents and limitations towards hardware affect the results. Difference in initial
strain on the length lead to one of the motors reaching it’s limit and therefore
struggling to follow trajectories of greater size. Additionally, during fast motion

96

the camera is not able to detect the robot’s tip at all times and measurements
are lost.

This motivates ideas for future work. First, the inverse model provides very good
results but the manufacturing and mounting inaccuracies impair the results. It
is expected that more accurate tracking can be achieved by installation of better
hardware, such as more powerful actuators, and improvements in the tracking
system, by increasing the speed of the tracking loop or choosing an alternative
to the detection using Apriltags. Furthermore, actuation can be enhanced
by finding a better representation for the non-linear actuation parameters. For
example, neural networks can be applied to learn the parameters, which are
expected to improve trajectory tracking, especially for paths close to the robot’s
center. Accurate trajectory following enables further research on control theory,
for example by applying feedback control.

Bibliography

[AllenEtAl20] Allen, T.F.; Rupert, L.; Duggan, T.R.; Hein, G.; Albert, K.:
Closed-form non-singular constant-curvature continuum manipulator kine-
matics. In 2020 3rd IEEE International Conference on Soft Robotics,
pp. 410–416, 2020.

[AmouriMahfoudiZaatri19] Amouri, A.; Mahfoudi, C.; Zaatri, A.: Dynamic
modeling of a spatial cable-driven continuum robot using euler-lagrange
method. 2019.

[ArmaniniEtAl22] Armanini, C.; Boyer, F.; Mathew, A.T.; Duriez, C.; Renda, F.:
Soft robots modeling: a structured overview, 2022.

[Bekman22] Bekman, T.: Model inversion of a soft robot for trajectory tracking,
master thesis. Hamburg University of Technology, 2022.

[BlajerKolodziejczyk04] Blajer, W.; Kolodziejczyk, K.: A geometric approach
to solving problems of control constraints: Theory and a dae framework.
Multibody System Dynamics, pp. 343–364, 2004.

[BlajerSeifriedKolodziejczyk15] Blajer, W.; Seifried, R.; Kolodziejczyk, K.:
Servo-constraint realization for underactuated mechanical systems.
Archive of Applied Mechanics, 2015.

[CoevoetEtAl17] Coevoet, E.; Morales-Bieze, T.; Largilliere, F.; Zhang, Z.; Thi-
effry, M.; Sanz-Lopez, M.; Carrez, B.; Marchal, D.; Goury, O.; Dequidt, J.;
Duriez, C.: Software toolkit for modeling, simulation, and control of soft
robots. Advanced Robotics, pp. 1–17, 2017.

[Della SantinaEtAl20] Della Santina, C.; Katzschmann, R.K.; Bicchi, A.;
Rus, D.: Model-based dynamic feedback control of a planar soft robot:
trajectory tracking and interaction with the environment. The Interna-
tional Journal of Robotics Research, 2020.

[DingEtAl22] Ding, L.; Niu, L.; Su, Y.; Yang, H.; Liu, G.; Gao, H.; Deng, Z.:
Dynamic finite element modeling and simulation of soft robots. Chinese
Journal of Mechanical Engineering, 2022.

98 BIBLIOGRAPHY

[Drücker22] Drücker, S.: Servo-constraints for inversion of underactuated multi-
body systems. Hamburg University of Technology, 2022.

[FalkenhahnEtAl14] Falkenhahn, V.; Mahl, T.; Hildebrandt, A.; Neumann, R.;
Sawodny, O.: Dynamic modeling of constant curvature continuum robots
using the euler-lagrange formalism. In 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 2428–2433, 2014.

[FangEtAl22] Fang, G.; Tian, Y.; Yang, Z.X.; Geraedts, J.M.P.; Wang, C.C.L.:
Efficient jacobian-based inverse kinematics with sim-to-real transfer of soft
robots by learning, 2022.

[Gent58] Gent, A.N.: On the relation between indentation hardness and young’s
modulus. Rubber Chemistry and Technology, Vol. 31, pp. 896–906, 1958.

[GiorelliEtAl12] Giorelli, M.; Renda, F.; Calisti, M.; Arienti, A.; Ferri, G.;
Laschi, C.: A two dimensional inverse kinetics model of a cable driven
manipulator inspired by the octopus arm. In 2012 IEEE International
Conference on Robotics and Automation, pp. 3819–3824, 2012.

[GiorelliEtAl13] Giorelli, M.; Renda, F.; Ferri, G.; Laschi, C.: A feed-forward
neural network learning the inverse kinetics of a soft cable-driven manipu-
lator moving in three-dimensional space. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5033–5039, 2013.

[GouryDuriez18] Goury, O.; Duriez, C.: Fast, generic, and reliable control and
simulation of soft robots using model order reduction. IEEE Transactions
on Robotics, 2018.

[GrossEtAl09] Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische
Mechanik 2: Band 2: Elastostatik (Springer-Lehrbuch). Springer, Berlin,
2009.

[GéradinCardona01] Géradin, M.; Cardona, A.: Flexible Multibody Dynamics:
A Finite Element Approach. 2001.

[Itseez15] Itseez: Open source computer vision library. https://github.com/
itseez/opencv, 2015.

[JensenEtAl22] Jensen, S.W.; Johnson, C.C.; Lindberg, A.M.; Killpack, M.D.:
Tractable and intuitive dynamic model for soft robots via the recursive
newton-euler algorithm. In 2022 IEEE 5th International Conference on
Soft Robotics, pp. 416–422, 2022.

[Kirgetov67] Kirgetov, V.: The motion of controlled mechanical systems with
prescribed constraints (servoconstraints). Journal of Applied Mathematics
and Mechanics, pp. 465–477, 1967.

https://github.com/itseez/opencv
https://github.com/itseez/opencv

Bibliography 99

[LargilliereEtAl15] Largilliere, F.; Verona, V.; Coevoet, E.; Sanz-Lopez, M.;
Dequidt, J.; Duriez, C.: Real-time control of soft-robots using asyn-
chronous finite element modeling. In 2015 IEEE International Conference
on Robotics and Automation, pp. 2550–2555, 2015.

[Mueller19] Mueller, A.: Modern robotics: Mechanics, planning, and control.
IEEE Control Systems Magazine, pp. 100–102, 2019.

[Nystedt21] Nystedt, P.: Arc length of function graphs via taylor’s formula. In-
ternational Journal of Mathematical Education in Science and Technology,
pp. 310–323, 2021.

[Olson11] Olson, E.: Apriltag: A robust and flexible visual fiducial system.
pp. 3400 – 3407, 2011.

[PolygerinosEtAl15] Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Gal-
loway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J.: Modeling of soft
fiber-reinforced bending actuators. IEEE Transactions on Robotics,
pp. 778–789, 2015.

[Powell64] Powell, M.J.D.: An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The Com-
puter Journal, pp. 155–162, 1964.

[RendaEtAl14] Renda, F.; Giorelli, M.; Calisti, M.; Cianchetti, M.; Laschi, C.:
Dynamic model of a multibending soft robot arm driven by cables. IEEE
Transactions on Robotics, pp. 1109–1122, 2014.

[RendaEtAl18] Renda, F.; Boyer, F.; Dias, J.; Seneviratne, L.: Discrete cosserat
approach for multisection soft manipulator dynamics. IEEE Transactions
on Robotics, pp. 1518–1533, 2018.

[RoneBen-Tzvi14] Rone, W.S.; Ben-Tzvi, P.: Continuum robot dynamics uti-
lizing the principle of virtual power. IEEE Transactions on Robotics,
pp. 275–287, 2014.

[RungeEtAl17] Runge, G.; Wiese, M.; günther, l.; Raatz, A.: A framework for
the kinematic modeling of soft material robots combining finite element
analysis and piecewise constant curvature kinematics. 2017.

[SchiehlenEberhard20] Schiehlen, W.; Eberhard, P.: Technische Dynamik, Ak-
tuelle Modellierungs- und Berechnungsmethoden auf einer gemeinsamen
Basis. Springer Vieweg Wiesbaden, 2020.

[Seifried14] Seifried, R.: Dynamics of Underactuated Multibody Systems: Mod-
eling, Control and Optimal Design. 2014.

100 BIBLIOGRAPHY

[ShamilyanEtAl23] Shamilyan, O.; Kabin, I.; Dyka, Z.; Sudakov, O.; Chernin-
skyi, A.; Brzozowski, M.; Langendoerfer, P.: Intelligence and motion mod-
els of continuum robots: An overview. IEEE Access, pp. 60988–61003,
2023.

[SicilianoEtAl08] Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G.: Robotics:
Modelling, Planning and Control. Springer Publishing Company, Incor-
porated, 2008.

[SicilianoKhatib08] Siciliano, B.; Khatib, O.: Springer Handbook of Robotics.
Springer Handbook of Robotics. Springer Berlin Heidelberg, 2008.

[SpillmannTeschner07] Spillmann, J.; Teschner, M.: Corde: Cosserat rod ele-
ments for the dynamic simulation of one-dimensional elastic objects. Eu-
rographics, pp. 63–72, 2007.

[SullivanFlitzpatrick19] Sullivan, C.; Flitzpatrick, J.: Be-
yond the metal: Investigating soft robots at nasa
langley. https://www.nasa.gov/feature/langley/
beyond-the-metal-investigating-soft-robots-at-nasa-langley,
2019. Accessed: 2023-09-22.

[ThuruthelEtAl17] Thuruthel, T.; Falotico, E.; Renda, F.; Laschi, C.: Learning
dynamic models for open loop predictive control of soft robotic manipula-
tors. Bioinspiration & Biomimetics, 2017.

[ThuruthelEtAl18] Thuruthel, T.; Ansari, Y.; Falotico, E.; Laschi, C.: Control
strategies for soft robotic manipulators: A survey. Soft Robotics, 2018.

[ThuruthelRendaIida20] Thuruthel, T.; Renda, F.; Iida, F.: First-order dynamic
modeling and control of soft robots. Frontiers in Robotics and AI, Vol. 7,
2020.

[TillAloiRucker19] Till, J.; Aloi, V.; Rucker, D.: Real-time dynamics of soft and
continuum robots based on at-rod models. The International Journal of
Robotics Research, pp. 723–746, 2019.

[Tomlin01] Tomlin, C.: Nonlinear systems: analysis, stability, and control,
shankar sastry, springer-verlag, new york, ny, 1999. International Jour-
nal of Robust and Nonlinear Control, pp. 789–793, 2001.

[TrivediLotfiRahn08] Trivedi, D.; Lotfi, A.; Rahn, C.D.: Geometrically exact
models for soft robotic manipulators. IEEE Transactions on Robotics,
pp. 773–780, 2008.

https://www.nasa.gov/feature/langley/beyond-the-metal-investigating-soft-robots-at-nasa-langley
https://www.nasa.gov/feature/langley/beyond-the-metal-investigating-soft-robots-at-nasa-langley

Bibliography 101

[WebsterJones10] Webster, R.; Jones, B.: Design and kinematic modeling of
constant curvature continuum robots: A review. I. J. Robotic Res.,
pp. 1661–1683, 2010.

[Wiek21] Wiek, J.C.: Comparison of simulation methods for soft robots, project
thesis. Hamburg University of Technology, 2021.

[Wiek22] Wiek, J.C.: Comparison of control methods for soft robots, master
thesis. Hamburg University of Technology, 2022.

[Wood16] Wood, R.: squishy robot fingers aid deep sea ex-
ploration. https://seas.harvard.edu/news/2016/01/
squishy-robot-fingers-aid-deep-sea-exploration, 2016. Accessed:
2023-09-22.

[WuEtAl21] Wu, S.; Ze, Q.; Dai, J.; Udipi, N.; Paulino, G.; Zhao, R.: Stretchable
origami robotic arm with omnidirectional bending and twisting. Proceed-
ings of the National Academy of Sciences, Vol. 118, p. e2110023118, 2021.

[XunZhengKruszewski23] Xun, L.; Zheng, G.; Kruszewski, A.: Cosserat-rod
based dynamic modeling of soft slender robot interacting with environ-
ment, 2023.

[Zelinsky09] Zelinsky, A.: Trajectory planning for automatic machines and robots
(biagiotti, l. et al; 2008). IEEE Robotics & Automation Magazine - IEEE
ROBOT AUTOMAT, pp. 101–101, 2009.

[ZhengLin22] Zheng, T.; Lin, H.: Pde-based dynamic control and estimation of
soft robotic arms, 2022.

https://seas.harvard.edu/news/2016/01/squishy-robot-fingers-aid-deep-sea-exploration
https://seas.harvard.edu/news/2016/01/squishy-robot-fingers-aid-deep-sea-exploration

Appendix

A.1 Contents Archive

There is a folder MSC 059 Maroofi/ in the archive. The main folder contains
the entries

• MSC 059 Maroofi.pdf : the pdf-file of the thesis MSC-059.

• Data/: a folder with all the relevant data, programs, scripts and simulation
environments.

• Latex/: a folder with the *.tex documents of the thesis MSC-059 written
in Latex and all figures (also in *.svg data format if available).

• Presentation/: a folder with the relevant data for the presentation in-
cluding the presentation itself, figures and videos.

Erklärung

Ich, Sean Maroofi (Student des Maschinenbaus an der Technischen
Universität Hamburg, Matrikelnummer 51334), versichere, dass
ich die vorliegende Masterarbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel verwendet habe. Die Arbeit
wurde in dieser oder ähnlicher Form noch keiner Prüfungskommis-
sion vorgelegt.

Unterschrift Datum

	Introduction
	Fundamentals
	Operation Spaces
	Forward Direction
	Full Finite Element Model
	Cosserat Rod
	Piecewise Constant Curvature
	Data-Driven Methods

	Inverse Direction
	Inverse Dynamics for Softrobots
	Inverse Dynamics for Underactuated Systems

	Forward Model
	Modeling Choice for Kinematics
	Piecewise Constant Curvature Kinematics
	Parameterization
	Global Frame

	Forward Dynamics
	External Loads
	Actuation Loads
	Internal Loads
	Equations of Motion

	Actuation
	Output

	Inverse Model
	Inverse Model with Servo-Constraints
	Basic Concept
	Stability Analysis of Internal Dynamics
	Relative Degree

	Completing the System

	Implementation & Setup
	Software Details
	Solving the System
	Trajectory Generation
	Path Generation
	Adding Time Dependency
	Constant Velocity Profile
	Shifting Trajectories

	The Real Soft Robot
	Actuation System
	Tracking Setup

	Experimental Results
	Parameter Identification
	Impact of the Coefficients lF, q and lK, q
	Tuning of the Parameters cq and bq

	Trajectory Following
	Triangular Trajectory

	Summary and Outlook
	Bibliography
	Appendix
	Contents Archive

